Натуральные целые рациональные. Действительные числа, рациональные числа и иррациональные числа

Понимание чисел, особенно натуральных чисел, является одним из старейших математических "умений". Многие цивилизации, даже современные, приписывали числам некие мистические свойства ввиду их огромной важности в описании природы. Хотя современная наука и математика не подтверждают эти "волшебные" свойства, значение теории чисел неоспоримо.

Исторически сначала появилось множество натуральных чисел, затем довольно скоро к ним добавились дроби и положительные иррациональные числа. Ноль и отрицательные числа были введены после этих подмножеств множества действительных чисел. Последнее множество, множество комплексных чисел, появилось только с развитием современной науки.

В современной математике числа вводят не в историческом порядке, хотя и в довольно близком к нему.

Натуральные числа $\mathbb{N}$

Множество натуральных чисел часто обозначается как $\mathbb{N}=\lbrace 1,2,3,4... \rbrace $, и часто его дополняют нулем, обозначая $\mathbb{N}_0$.

В $\mathbb{N}$ определены операции сложения (+) и умножения ($\cdot$) со следующими свойствами для любых $a,b,c\in \mathbb{N}$:

1. $a+b\in \mathbb{N}$, $a\cdot b \in \mathbb{N}$ множество $\mathbb{N}$ замкнуто относительно операций сложения и умножения
2. $a+b=b+a$, $a\cdot b=b\cdot a$ коммутативность
3. $(a+b)+c=a+(b+c)$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ ассоциативность
4. $a\cdot (b+c)=a\cdot b+a\cdot c$ дистрибутивность
5. $a\cdot 1=a$ является нейтральным элементом для умножения

Поскольку множество $\mathbb{N}$ содержит нейтральный элемент для умножения, но не для сложения, добавление нуля к этому множеству обеспечивает включение в него нейтрального элемента для сложения.

Кроме этих двух операций, на множестве $\mathbb{N}$ определены отношения "меньше" ($

1. $a b$ трихотомия
2. если $a\leq b$ и $b\leq a$, то $a=b$ антисимметрия
3. если $a\leq b$ и $b\leq c$, то $a\leq c$ транзитивность
4. если $a\leq b$, то $a+c\leq b+c$
5. если $a\leq b$, то $a\cdot c\leq b\cdot c$

Целые числа $\mathbb{Z}$

Примеры целых чисел:
$1, -20, -100, 30, -40, 120...$

Решение уравнения $a+x=b$, где $a$ и $b$ - известные натуральные числа, а $x$ - неизвестное натуральное число, требует введения новой операции - вычитания(-). Если существует натуральное число $x$, удовлетворяющее этому уравнению, то $x=b-a$. Однако, это конкретное уравнение не обязательно имеет решение на множестве $\mathbb{N}$, поэтому практические соображения требуют расширения множества натуральных чисел таким образом, чтобы включить решения такого уравнения. Это приводит к введению множества целых чисел: $\mathbb{Z}=\lbrace 0,1,-1,2,-2,3,-3...\rbrace$.

Поскольку $\mathbb{N}\subset \mathbb{Z}$, логично предположить, что введенные ранее операции $+$ и $\cdot$ и отношения $ 1. $0+a=a+0=a$ существует нейтральный элемент для сложения
2. $a+(-a)=(-a)+a=0$ существует противоположное число $-a$ для $a$

Свойство 5.:
5. если $0\leq a$ и $0\leq b$, то $0\leq a\cdot b$

Множество $\mathbb{Z} $ замкнуто также и относительно операции вычитания, то есть $(\forall a,b\in \mathbb{Z})(a-b\in \mathbb{Z})$.

Рациональные числа $\mathbb{Q}$

Примеры рациональных чисел:
$\frac{1}{2}, \frac{4}{7}, -\frac{5}{8}, \frac{10}{20}...$

Теперь рассмотрим уравнения вида $a\cdot x=b$, где $a$ и $b$ - известные целые числа, а $x$ - неизвестное. Чтобы решение было возможным, необходимо ввести операцию деления ($:$), и решение приобретает вид $x=b:a$, то есть $x=\frac{b}{a}$. Опять возникает проблема, что $x$ не всегда принадлежит $\mathbb{Z}$, поэтому множество целых чисел необходимо расширить. Таким образом вводится множество рациональных чисел $\mathbb{Q}$ с элементами $\frac{p}{q}$, где $p\in \mathbb{Z}$ и $q\in \mathbb{N}$. Множество $\mathbb{Z}$ является подмножеством, в котором каждый элемент $q=1$, следовательно $\mathbb{Z}\subset \mathbb{Q}$ и операции сложения и умножения распространяются и на это множество по следующим правилам, которые сохраняют все вышеперечисленные свойства и на множестве $\mathbb{Q}$:
$\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1\cdot q_2+p_2\cdot q_1}{q_1\cdot q_2}$
$\frac{p-1}{q_1}\cdot \frac{p_2}{q_2}=\frac{p_1\cdot p_2}{q_1\cdot q_2}$

Деление вводится таким образом:
$\frac{p_1}{q_1}:\frac{p_2}{q_2}=\frac{p_1}{q_1}\cdot \frac{q_2}{p_2}$

На множестве $\mathbb{Q}$ уравнение $a\cdot x=b$ имеет единственное решение для каждого $a\neq 0$ (деление на ноль не определено). Это значит, что существует обратный элемент $\frac{1}{a}$ or $a^{-1}$:
$(\forall a\in \mathbb{Q}\setminus\lbrace 0\rbrace)(\exists \frac{1}{a})(a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=a)$

Порядок множества $\mathbb{Q}$ можно расширить таким образом:
$\frac{p_1}{q_1}

Множество $\mathbb{Q}$ имеет одно важное свойство: между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, следовательно, не существует двух соседних рациональных чисел, в отличие от множеств натуральных и целых чисел.

Иррациональные числа $\mathbb{I}$

Примеры иррациональных чисел:
$\sqrt{2} \approx 1.41422135...$
$\pi \approx 3.1415926535...$

Ввиду того, что между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, легко можно сделать ошибочный вывод, что множество рациональных чисел настолько плотное, что нет необходимости в его дальнейшем расширении. Даже Пифагор в свое время сделал такую ошибку. Однако, уже его современники опровергли этот вывод при исследовании решений уравнения $x\cdot x=2$ ($x^2=2$) на множестве рациональных чисел. Для решения такого уравнения необходимо ввести понятие квадратного корня, и тогда решение этого уравнения имеет вид $x=\sqrt{2}$. Уравнение типа $x^2=a$, где $a$ - известное рациональное число, а $x$ - неизвестное, не всегда имеет решение на множестве рациональных чисел, и опять возникает необходимость в расширении множества. Возникает множество иррациональных чисел, и такие числа как $\sqrt{2}$, $\sqrt{3}$, $\pi$... принадлежат этому множеству.

Действительные числа $\mathbb{R}$

Объединением множеств рациональных и иррациональных чисел является множество действительных чисел. Поскольку $\mathbb{Q}\subset \mathbb{R}$, снова логично предположить, что введенные арифметические операции и отношения сохраняют свои свойства на новом множестве. Формальное доказательство этого весьма сложно, поэтому вышеупомянутые свойства арифметических операций и отношения на множестве действительных чисел вводятся как аксиомы. В алгебре такой объект называется полем, поэтому говорят, что множество действительных чисел является упорядоченным полем.

Для того, чтобы определение множества действительных чисел было полным, необходимо ввести дополнительную аксиому, различающую множества $\mathbb{Q}$ и $\mathbb{R}$. Предположим, что $S$ - непустое подмножество множества действительных чисел. Элемент $b\in \mathbb{R}$ называется верхней границей множества $S$, если $\forall x\in S$ справедливо $x\leq b$. Тогда говорят, что множество $S$ ограничено сверху. Наименьшая верхняя граница множества $S$ называется супремум и обозначается $\sup S$. Аналогично вводятся понятия нижней границы, множества, ограниченного снизу, и инфинума $\inf S$ . Теперь недостающая аксиома формулируется следующим образом:

Любое непустое и ограниченное сверху подмножество множества действительных чисел имеет супремум.
Также можно доказать, что поле действительных чисел, определенное вышеуказанным образом, является единственным.

Комплексные числа$\mathbb{C}$

Примеры комплексных чисел:
$(1, 2), (4, 5), (-9, 7), (-3, -20), (5, 19),...$
$1 + 5i, 2 - 4i, -7 + 6i...$ где $i = \sqrt{-1}$ или $i^2 = -1$

Множество комплексных чисел представляет собой все упорядоченные пары действительных чисел, то есть $\mathbb{C}=\mathbb{R}^2=\mathbb{R}\times \mathbb{R}$, на котором операции сложения и умножения определены следующим образом:
$(a,b)+(c,d)=(a+b,c+d)$
$(a,b)\cdot (c,d)=(ac-bd,ad+bc)$

Существует несколько форм записи комплексных чисел, из которых самая распространенная имеет вид $z=a+ib$, где $(a,b)$ - пара действительных чисел, а число $i=(0,1)$ называется мнимой единицей.

Легко показать, что $i^2=-1$. Расширение множества $\mathbb{R}$ на множество $\mathbb{C}$ позволяет определить квадратный корень из отрицательных чисел, что и послужило причиной введения множества комплексных чисел. Также легко показать, что подмножество множества $\mathbb{C}$, заданное как $\mathbb{C}_0=\lbrace (a,0)|a\in \mathbb{R}\rbrace$, удовлетворяет всем аксиомам для действительных чисел, следовательно $\mathbb{C}_0=\mathbb{R}$, или $R\subset\mathbb{C}$.

Алгебраическая структура множества $\mathbb{C}$ относительно операций сложения и умножения имеет следующие свойства:
1. коммутативность сложения и умножения
2. ассоциативность сложения и умножения
3. $0+i0$ - нейтральный элемент для сложения
4. $1+i0$ - нейтральный элемент для умножения
5. умножение дистрибутивно по отношению к сложению
6. существует единственный обратный элемент как для сложения, так и для умножения.

Из большого количества разнообразных множеств особо интересными и важными являются числовые множества, т.е. те множества, элементами которых служат числа. Очевидно, что для работы с числовыми множествами необходимо иметь навык записи их, а также изображения их на координатной прямой.

Запись числовых множеств

Общепринятым обозначением любых множеств являются заглавные буквы латиницы. Числовые множества – не исключение. К примеру, мы можем говорить о числовых множествах B , F или S и т.п. Однако есть также общепринятая маркировка числовых множеств в зависимости от входящих в него элементов:

N – множество всех натуральных чисел; Z – множество целых чисел; Q – множество рациональных чисел; J – множество иррациональных чисел; R – множество действительных чисел; C – множество комплексных чисел.

Становится понятным, что обозначение, например, множества, состоящего из двух чисел: - 3 , 8 буквой J может ввести в заблуждение, поскольку этой буквой маркируется множество иррациональных чисел. Поэтому для обозначения множества - 3 , 8 более подходящим будет использование какой-то нейтральной буквы: A или B , например.

Напомним также следующие обозначения:

  • ∅ – пустое множество или множество, не имеющее составных элементов;
  • ∈ или ∉ - знак принадлежности или непринадлежности элемента множеству. Например, запись 5 ∈ N обозначает, что число 5 является частью множества всех натуральных чисел. Запись - 7 , 1 ∈ Z отражает тот факт, что число - 7 , 1 не является элементом множества Z , т.к. Z – множество целых чисел;
  • знаки принадлежности множества множеству:
    ⊂ или ⊃ - знаки «включено» или «включает» соответственно. Например, запись A ⊂ Z означает, что все элементы множества А входят в множество Z , т.е. числовое множество A включено в множество Z . Или наоборот, запись Z ⊃ A пояснит, что множество всех целых чисел Z включает множество A .
    ⊆ или ⊇ - знаки так называемого нестрогого включения. Означают «включено или совпадает» и «включает или совпадает» соответственно.

Рассмотрим теперь схему описания числовых множеств на примере основных стандартных случаев, наиболее часто используемых на практике.

Первыми рассмотрим числовые множества, содержащие конечное и небольшое количество элементов. Описание подобного множества удобно составлять, просто перечисляя все его элементы. Элементы в виде чисел записываются, разделяясь запятой, и заключаются в фигурные скобки (что соответствует общим правилам описания множеств). К примеру, множество из чисел 8 , - 17 , 0 , 15 запишем как { 8 , - 17 , 0 , 15 } .

Случается, что количество элементов множества достаточно велико, но все они подчиняются определенной закономерности: тогда в описании множества используют многоточие. К примеру, множество всех четных чисел от 2 до 88 запишем как: { 2 , 4 , 6 , 8 , … , 88 } .

Теперь поговорим об описании числовых множеств, в которых количество элементов бесконечно. Иногда их описывают при помощи того же многоточия. Например, множество всех натуральных чисел запишем так: N = { 1 , 2 , 3 , … } .

Также возможно записать числовое множество с бесконечным количеством элементов при помощи указания свойств его элементов. Применяют при этом обозначение { х | свойства } . К примеру, { n | 8 · n + 3 , n ∈ N } определяет множество натуральных чисел, которые при делении на 8 дадут остаток 3 . Это же множество возможно записать как: { 11 , 19 , 27 , … } .

В частных случаях числовые множества с бесконечным количеством элементов – это общеизвестные множества N , Z , R и т.д., либо числовые промежутки. Но в основном числовые множества представляют собой объединение составляющих их числовых промежутков и числовых множеств с конечным количеством элементов (о них мы говорили в самом начале статьи).

Рассмотрим на примере. Допустим, составляющими некого числового множества являются числа - 15 , - 8 , - 7 , 34 , 0 , а также все числа отрезка [ - 6 , - 1 , 2 ] и числа открытого числового луча (6 , + ∞) . В соответствии с определением объединения множеств заданное числовое множество запишем как: { - 15 , - 8 , - 7 , 34 } ∪ [ - 6 , - 1 , 2 ] ∪ { 0 } ∪ (6 , + ∞) . Подобная запись фактически означает множество, включающее в себя все элементы множеств { - 15 , - 8 , - 7 , 34 , 0 } , [ - 6 , - 1 , 2 ] и (6 , + ∞) .

Таким же образом, объединяя различные числовые промежутки и множества отдельных чисел, возможно дать описание любому числовому множеству, состоящему из действительных чисел. На основе сказанного становится понятно, для чего вводятся различные виды числовых промежутков, такие как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч. Все эти виды промежутков совместно с обозначениями множеств отдельных чисел дают возможность через их объединение описать любое числовое множество.

Необходимо также обратить внимание на то, что отдельные числа и числовые промежутки при записи множества могут быть упорядочены по возрастанию. В общем, это не является обязательным требованием, однако подобное упорядочивание позволяет представить числовое множество проще, а также верно отобразить его на координатной прямой. Также стоит уточнить, что в таких записях не применяют числовые промежутки с общими элементами, поскольку эти записи возможно заменить объединением числовых промежутков, исключив общие элементы. К примеру, объединением числовых множеств с общими элементами [ - 15 , 0 ] и (- 6 , 4) будет полуинтервал [ - 15 , 4) . То же имеет отношение и к объединению числовых промежутков с одинаковыми граничными числами. Например, объединение (4 , 7 ] ∪ (7 , 9 ] является множеством (4 , 9 ] . Этот пункт подробно будет рассмотрен в теме нахождения пересечения и объединения числовых множеств.

В практических примерах удобно использовать геометрическое толкование числовых множеств – их изображение на координатной прямой. К примеру, такой способ поможет при решении неравенств, в которых нужно учесть ОДЗ – когда нужно отобразить числовые множества, чтобы определить их объединение и/или пересечение.

Мы знаем, что между точками координатной прямой и действительными числами имеется однозначное соответствие: вся координатная прямая есть геометрическая модель множества всех действительных чисел R . Следовательно, для изображения множества всех действительных чисел начертим координатную прямую и нанесем штриховку на всем ее протяжении:

Зачастую и не указывают начало отсчета и единичный отрезок:

Рассмотрим изображение числовых множеств, состоящих из конечного количества отдельных чисел. К примеру, отобразим числовое множество { - 2 , - 0 , 5 , 1 , 2 } . Геометрической моделью заданного множества станут три точки координатной прямой с соответствующими координатами:

В большинстве случаев возможно не соблюдать абсолютную точность чертежа: вполне достаточно схематичного изображения без соблюдения масштаба, но с сохранением взаимного расположения точек относительно друг друга, т.е. любая точка с бОльшей координатой должна быть правее точки с меньшей. С учётом сказанного уже имеющийся чертеж может выглядеть так:

Отдельно из возможных числовых множеств выделяют числовые промежутки интервалы, полуинтервалы, лучи и пр.)

Теперь рассмотрим принцип изображения числовых множеств, являющихся объединением нескольких числовых промежутков и множеств, состоящих их отдельных чисел. В этом нет никакой сложности: согласно определению объединения на координатной прямой необходимо отобразить все составляющие множества заданного числового множества. Например, создадим иллюстрацию числового множества (- ∞ , - 15) ∪ { - 10 } ∪ [ - 3 , 1) ∪ { log 2 5 , 5 } ∪ (17 , + ∞) .

Также довольно распространены случаи, когда числовое множество, которое необходимо изобразить, включает в себя все множество действительных чисел кроме одной или нескольких точек. Подобные множества часто задаются условиями вроде х ≠ 5 или х ≠ - 1 и т.п. В таких случаях множества в своей геометрической модели являются всей координатной прямой за исключением заданных точек. Общепринято говорить, что эти точки необходимо «выколоть» из координатной прямой. Изображается выколотая точка кружочком с пустым центром. Чтобы подкрепить сказанное практическим примером, отобразим на координатной прямой множество с заданным условием х ≠ - 2 и х ≠ 3:

Информация, приведенная в данной статье, призвана помочь получить навык видеть запись и изображение числовых множеств так же легко, как и отдельных числовых промежутков. В идеале записанное числовое множество сразу должно представляться в виде геометрического образа на координатной прямой. И наоборот: по изображению должно с легкостью формироваться соответствующее числовое множество через объединение числовых промежутков и множеств, являющихся отдельными числами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Число - важнейшее математическое понятие, меняющееся на протяжении веков.

Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4, ...

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Обозначаются: , где m, n - целые числа;

Дроби со знаменателем 10n , где n - целое число, называются десятичными : .

Среди десятичных дробей особое место занимают периодические дроби : - чистая периодическая дробь, - смешанная периодическая дробь.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в XVII в. вводит понятие отрицательного числа .

Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел . Всякое рациональное число может быть записано в виде дроби конечной и периодической.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби.

Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата), в алгебре - при извлечении корней , примером трансцендентного, иррационального числа являются π, e .

Числа натуральные (1, 2, 3,...), целые (..., –3, –2, –1, 0, 1, 2, 3,...), рациональные (представимые в виде дроби) и иррациональные (не представимые в виде дроби) образуют множество действительных (вещественных) чисел.

Отдельно в математике выделяют комплексные числа.

Комплексные числа возникают в связи с задачей решения квадратных для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: z=a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Свойства:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0i или a – 0i . Например 5 + 0i и 5 – 0i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Действия:

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d )i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число (a – c ) + (b – d )i . Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

(ac – bd ) + (ad + bc )i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = –1.

П р и м е р. (a+ bi )(a – bi )= a 2 + b 2 . Следовательно, произведение двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi . Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим:

Задание 1: Сложите, вычтите, умножьте и разделите z 1 на z 2

Извлечение корня квадратного: Реши уравнение x 2 = -a. Для решения данного уравнения мы вынуждены воспользоваться числами нового типа – мнимые числа . Таким образом, мнимым называется число, вторая степень которого является числом отрицательным . Согласно этому определению мнимых чисел мы можем определить и мнимую единицу :

Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:

Задание 2: Реши уравнение:

1) x 2 = – 36; 2) x 2 = – 49; 3) x 2 = – 121

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B –число 2, и O –ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или) буквой r и равен:

Сопряжённые комплексные числа имеют одинаковый модуль.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат По осям нужно задать размерность, отмечаем:

е
диницу по действительной оси; Re z

мнимую единицу по мнимой оси. Im z

Задание 3. Построить на комплексной плоскости следующие комплексные числа: , , , , , , ,

1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.

Так, если говорят, что в классе есть 29 учеников, то число 29 - точное. Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 - приближенное, так как, с одной стороны, наши измерительные инструменты не абсолютно точны, с другой стороны, сами города имеют некоторую протяженность.

Результат действий с приближенными числами есть тоже приближенное число. Выполняя некоторые действия над точными числами (деление, извлечение корня), можно также получить приближенные числа.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов;

2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата;

3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.

2. Округление. Одним из источников получения приближенных чисел является округление. Округляют как приближенные, так и точные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путем отбрасывания всех его цифр, записанных правее цифры этого разряда, или путем замены их нулями. Эти нули обычно подчеркивают или пишут их меньшими. Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такими правилами: чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком);

2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком).

Покажем это на примерах. Округлить:

а) до десятых 12,34;

б) до сотых 3,2465; 1038,785;

в) до тысячных 3,4335.

г) до тысяч 12375; 320729.

а) 12,34 ≈ 12,3;

б) 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в) 3,4335 ≈ 3,434.

г) 12375 ≈ 12 000; 320729 ≈ 321000.

3. Абсолютная и относительная погрешности. Разность между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа. Например, если точное число 1,214 округлить до десятых, получим приближенное число 1,2. В данном случае абсолютная погрешность приближенного числа 1,2 равна 1,214 - 1,2, т.е. 0,014.

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу, которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например, число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01, так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01. Здесь граничная абсолютная погрешность равна 0,01 * .

Граничную абсолютную погрешность приближенного числа а обозначают символом Δa . Запись

x a (±Δa )

следует понимать так: точное значение величины x находится в промежутке между числамиа – Δa иа + Δа , которые называют соответственно нижней и верхней границейх и обозначают НГx ВГх .

Например, если x ≈ 2,3 (±0,1), то 2,2<x < 2,4.

Наоборот, если 7,3< х < 7,4, тох ≈ 7,35 (±0,05). Абсолютная или граничная абсолютная погрешность не характеризует качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина. Например если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого изменения в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой. Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью; обозначают ее так: . Относительную и граничную относительную погрешности принято выражать в процентах. Например, если измерения показали, что расстояниех между двумя пунктами больше 12,3 км, но меньше 12,7 км, то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму, тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случаех ≈ 12,5 (±0,2). Здесь граничная абсолютная погрешность равна 0,2 км, а граничная относительная

Множество — это набор каких-либо объектов, которые называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим делители числа 6

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

Читается как: «2 принадлежит множеству делителей числа 6»

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности ∉. К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

Читается как: «5 не принадлежит множеству делителей числа 6″

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.