Движение тела в специальной теории относительности. Специальная теория относительности

После того как математики создали правила в пространстве понятий и чисел, ученые были уверены, что им остается лишь ставить эксперименты и с помощью логических построений объяснять устройство всего сущего. В разумных пределах законы математики работают. Но эксперименты, выходящие за рамки ежедневных понятий и представлений, требуют новых принципов и законов.

Идея

В середине XIX века повсеместно распространилась удобная идея о всеобщем эфире, которая устраивала большинство ученых и исследователей. Таинственный эфир стал наиболее распространенной моделью, объясняющей известные на то время физические процессы. Но к математическому описанию гипотезы эфира постепенно добавлялись множество необъяснимых фактов, которые объяснялись различными дополнительными условиями и допущениями. Постепенно стройная теория эфира обросла «костылями», их становилось слишком много. Требовались новые идеи для объяснения устройства нашего мира. Постулаты специальной теории относительности соответствовали всем требованиям - они были кратки, непротиворечивы и полностью подтверждались экспериментами.

Опыты Майкельсона

Последней каплей, которая «сломала спину» гипотезе эфира, стали исследования в области электродинамики и объясняющие их уравнения Максвелла. При приведении результатов опытов к математическому решению, Максвелл использовал теорию эфира.

В своем эксперименте исследователи заставили два луча, идущих в разных направлениях, излучаться синхронно. При условии что свет движется в «эфире», один луч света должен был двигаться медленнее другого. Несмотря на многочисленные повторения опыта, результата был один и тот же - свет двигался с постоянной скоростью.

Иначе нельзя было объяснить тот факт, что, согласно расчетам, скорость света в гипотетическом эфире» всегда была одинаковой, независимо от того, с какой скоростью двигался наблюдатель. Но чтобы объяснить результаты исследований, требовалось, чтобы система отсчета была « идеальной». А это противоречило постулату Галилея об инвариантности всех инерциальных систем отсчета.

Новая теория

В начале ХХ века целая плеяда ученых приступила к разработке теории, которая примиряла бы результаты исследований электромагнитных колебаний с принципами классической механики.

При разработке новой теории было учтено, что:

Движение с около световыми скоростями меняет формулу второго закона Ньютона, связывающего ускорение с силой и массой;

Уравнение для импульса тела должно иметь другую, более сложную формулу;

Скорость света оставалась постоянной, вне зависимости от выбранной системы отсчета.

Усилия А. Пуанкаре, Г. Лоренца и А. Эйнштейна привели к созданию специальной теории относительности, которая согласовала все недостатки и объяснила существующие наблюдения.

Основные понятия

Основы специальной теории относительности заключаются в определениях, которыми оперирует данная теория

1. Система отсчета - материальное тело, которое можно принять за начало системы отсчета и координату времени, в течение которого наблюдатель будет следить за движением объектов.

2. Инерциальная система отсчета - та, которая движется равномерно и прямолинейно.

3. Событие. Специальная и общая теория относительности рассматривают событие как локализованный в пространстве физический процесс с ограниченной длительностью. Координаты объекта могут быть заданы в трехмерном пространстве как (x, y, z) и периодом времени t. Стандартным примером такого процесса является световая вспышка.

Специальная теория относительности рассматривает инерциальные системы отсчета, в которых первая система движется возле второй с постоянной скоростью. В этом случае поиск соотношений координат объекта в этих инерциальных системах является приоритетным для СТО и входит в ее основные задачи. Специальная теория относительности сумела решить этот вопрос при помощи формул Лоренца.

Постулаты СТО

При разработке теории Эйнштейн отмел все многочисленные допущения, которые были необходимыми для поддержания теории эфира. Простота и математическая доказуемость - вот два кита, на которых держалась его специальная теория относительности. Кратко ее предпосылки можно свести к двум постулатам, которые были необходимы для создания новых законов:

  1. Все физические законы в инерциальных системах выполняются одинаково.
  2. Скорость света в вакууме постоянна, она не зависит от расположения наблюдателя и его скорости.

Эти постулаты специальной теории относительности сделали бесполезной теории о мифическом эфире. Взамен этой субстанции была предложена концепция четырехмерного пространства, связавшего воедино время и пространство. При указании местонахождении тела в пространстве нужно учитывать и четвертую координату - время. Данное представление кажется довольно искусственным, но следует учесть, что подтверждение данной точки зрения лежит в пределах скоростей, соизмеримых со скоростью света, а в повседневном мире законы классической физики выполняют свою работу на «отлично». Принцип относительности Галилея выполняется для всех инерциальных систем отсчета: если в СО k соблюдается правило F = ma, то оно будет правильным и в другой системе отсчета k’. В классической физике время - величина определенная, и его значение неизменно и не зависит от движения инерциальной СО.

Преобразования в СТО

Коротко координаты точки и время можно обозначить так:

x" = x - vt и t" = t.

такую формулу дает классическая физика. Специальная теория относительности предлагает эту формулу в более усложненном виде.

В этом уравнении величины (x,x’ y,y’ z,z’ t,t’) обозначают координаты объекта и течение времени в наблюдаемых системах отсчета, v -скорость объекта, а с - скорость света в вакууме.

Скорости объектов в таком случае должны соответствовать не стандартной Галилеевской

формуле v= s/t, а такому преобразованию Лоренца:

Как можно видеть, при пренебрежимо малой скорости тела эти уравнения вырождаются во всем известные уравнения классической физики. Если предпочесть другую крайность и задать скорость объекта равной скорости света, то в этом предельном случае все равно получается c. Отсюда специальная теория относительности делает вывод, что ни одно тело в наблюдаемом мире не может двигаться ос скоростью, превышающей скорость света.

Следствия СТО

При дальнейшем рассмотрении преобразований Лоренца становится ясно, что со стандартными объектами начинают происходить нестандартные вещи. Следствия специальной теории относительности - это изменение длины объекта и течения времени. Если длина отрезка в одной системе отсчета будет равна l, то наблюдения из другой ОС, дадут такое значение:

Таким образом, выясняется, что наблюдатель из второй системы отсчета увидит отрезок более коротким, чем первый.

Удивительные превращение коснулись и такой величины, как время. Уравнение для координаты t будет выглядеть таким образом:

Как можно видеть, время во второй системе отсчета течет медленнее, чем в первой. Естественно, оба этих уравнения дадут результаты только при скоростях, сравнимых со скоростью света.

Первым вывел формулу замедления времени Эйштейн. Он же и предолжил разгадать так называемый «парадокс близнецов». По условию этой задачи имеются братья-близнецы, один из которых остался на Земле, а второй улетел на ракете в космос. Согласно формуле, написанной выше, братья будут стареть по разному, так как время для путешествующего брата течет медленнее. Этот парадокс имеет решение, если учесть, что брат-домосед все время находился в инерциальной системе отсчета, а близнец-непоседа путешествовал в неинерциальной СО, которая двигалась с ускорением.

Изменение массы

Еще одним следствием СТО является изменение массы наблюдаемого объекта в различных СО. Поскольку все физические законы одинаково действуют во всех инерциальных системах отсчета, фундаментальные законы сохранения - импульса, энергии и момента импульса - должны соблюдаться. Но поскольку скорость для наблюдателя в неподвижной СО больше, чем в движущейся, то, согласно закону сохранения импулься, масса объекта должна измениться на величину:

В первой системе отсчета объект должен иметь большую массу тела, чем во второй.

Приняв скорость тела равной скорости света, получаем неожиданный вывод - масса объекта достигает бесконечной величины. Разумеется, любое материальное тело в обозримой вселенной имеет свою конечную массу. Уравнение лишь говорит о том, что никакой физический объект не может двигаться ос скоростью света.

Соотношение массы и энергии

При скорости объекта, много меньшей скорости света, уравнение для массы можно привести к виду:

Выражение m 0 c представляет собой некое свойство объекта, которое зависит только от его массы. Эта величина получила название энергии покоя. Сумма энергий покоя и движения может быть записана так:

mc 2 = m 0 c + E кин.

Отсюда вытекает, что полная энергия объекта может быть выражена формулой:

Простота и элегантность формулы энергии тела придали законченность,

где Е - полная энергия тела.

Простота и элегантность знаменитой формулы Эйнштейна придали законченность специальной теории относительности, сделав ее внутренне непротиворечивой и не требующей многих допущений. Таким образом, исследователи объяснили многие противоречия и дали толчок для изучения новых явлений природы.

OОсновные понятия

Принцип относительности Галилея

Принцип относительности (первый постулат Эйнштейна): законы природы инвариантны относительно смены системы отсчёта

Инвариантность скорости света (второй постулат Эйнштейна)

Постулаты Эйнштейна как проявление симметрий пространства и времени

Основные релятивистские эффекты (следствия из постулатов Эйнштейна).

Соответствие СТО и классической механики: их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света)

& Краткое содержание

Принцип относительности - фундаментальный физический принцип. Различают:

    Принцип относительности классической механики -постулат Г.Галилея , согласно которому в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Законы механики одинаковы во всех инерциальных системах отсчёта.

    Принцип относительности релятивитской механики - постулат А.Эйнштейна , согласно которому в любых инерциальных системах отсчета все физические явления протекают одинаково. Т.е. все законы природы одинаковы во всех инерциальных системах отсчёта.

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: тело, на которое не действуют внешние силы, находится в состоянии покоя или равномерного прямолинейного движения.

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики в них действуют одинаково.

Предположение о существовании хотя бы двух ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга с постоянными скоростями.

Если скорости относительного движения ИСО могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея.

Если скорости относительного движения ИСО не могут превышать некоторой конечной скорости «с», связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Лоренца. Постулируя линейность этих преобразований, получают постоянство скорости «с» во всех инерциальных системах отсчета.

Отцом принципа относительности считается Галилео Галилей , который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. Идеи Галилея нашли развитие в механике Ньютона. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом. Эти противоречия привели к созданию Эйнштейном специальной теории относительности. После этого обобщённый принцип относительности стал называться «принципом относительности Эйнштейна», а его механическая формулировка - «принципом относительности Галилея».

А. Эйнштейн показал, что принцип относительности может быть сохранен, если радикально пересмотреть не подвергавшиеся на протяжении столетий сомнению фундаментальные понятия пространства и времени. Работа Эйнштейна стала частью системы образования нового блестящего поколения физиков, выросшего в 1920-х годах. Последующие годы не выявили в частной теории относительности каких-либо слабых мест.

Однако Эйнштейну не давало покоя то обстоятельство, ранее отмеченное Ньютоном, что вся идея относительности движения рушится, если ввести ускорение; в этом случае в игру вступают силы инерции, отсутствующие при равномерном и прямолинейном движении. Через десять лет после создания частной теории относительности Эйнштейн предложил новую, в высшей степени оригинальную теорию, в которой главную роль играет гипотеза искривленного пространства и которая дает единую картину явлений инерции и гравитации. В этой теории принцип относительности сохранен, но представлен в гораздо более общей форме, и Эйнштейну удалось показать, что его общая теория относительности с небольшими изменениями включает бóльшую часть ньютоновской теории тяготения, причем одно из этих изменений объясняет известную аномалию в движении Меркурия.

На протяжении более 50 лет после появления общей теории относительности в физике ей не придавалось особого значения. Дело в том, что расчеты, производимые на основе общей теории относительности, дают почти такие же ответы, как и вычисления в рамках теории Ньютона, а математический аппарат общей теории относительности намного сложнее. Проводить длинные и трудоемкие расчеты стоило лишь, чтобы разобраться в явлениях, возможных в гравитационных полях неслыханно высокой интенсивности. Но в 1960-х годах, с наступлением эры космических полетов, астрономы начали сознавать, что Вселенная гораздо разнообразнее, чем это представлялось вначале, и что могут существовать такие компактные объекты с высокой плотностью, как нейтронные звезды и черные дыры, в которых гравитационное поле действительно достигает необычайно высокой интенсивности. В то же время развитие вычислительной техники отчасти сняло бремя утомительных расчетов с плеч ученого. В результате общая теория относительности начала привлекать внимание многочисленных исследователей, и в этой области начался бурный прогресс. Были получены новые точные решения уравнений Эйнштейна и найдены новые способы интерпретации их необычных свойств. Более детально была разработана теория черных дыр. Граничащие с фантастикой приложения этой теории указывают на то, что топология нашей Вселенной гораздо сложнее, чем можно было думать, и что могут существовать другие вселенные, отстоящие от нашей на гигантские расстояния и соединенные с ней узкими мостиками искривленного пространства. Не исключено, конечно, что это предположение окажется неверным, но ясно одно: теория и феноменология гравитации – это математическая и физическая страна чудес, которую мы едва начали исследовать.

Два фундаментальных принципа СТО:

    Первый постулат Эйнштейна (принцип относительности ): законы природы инвариантны относительно смены системы отсчёта (все законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга. Иначе говоря, никакими опытами нельзя отличить движущуюся систему отсчета от покоящейся. Например, ощущения, которые испытывает человек в неподвижном автомобиле на перекрестке, когда ближайшая к нему машина начинает медленно трогаться с места, у человека возникает иллюзия, что его машина откатывается назад.)

    Второй постулат Эйнштейна :инвариантность скорости света (принцип постоянства скорости света : скорость света в вакууме одинакова во всех системах отсчета, движущихся прямолинейно и равномерно друг относительно друга (c=const=3 10 8 м/с). Скорость света в вакууме не зависит от движения или покоя источника света. Скорость света является предельно возможной скоростью распространения материальных объектов).

Соответствие СТО и классической механики : их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света).

Эйнштейн отказался от понятий пространства и времени Ньютона.

Пространства без материи, как чистого вместилища, не бывает, и геометрия (искривление) мира, и замедление течения времени определяются распределением и движением материи.

Основные релятивистские эффекты (следствия из постулатов Эйнштейна ):

    время относительно , т.е. скорость хода часов определяется скоростью самих часов относительно наблюдателя.

    пространство относительно , т.е. расстояние между точками пространства зависит от скорости наблюдателя.

    относительность одновременности (если для неподвижного наблюдателя два события одновременны, то для наблюдателя, который движется, – это не так)

    относительность расстояний (релятивистское сокращение длин : в движущейся системе отсчета пространственные масштабы укорочены вдоль направления движения)

    относительность промежутков времени (релятивистское замедление времени : в движущейся системе отсчета время идет медленнее). Этот эффект проявляется, к примеру, в необходимости корректировать часы на спутниках Земли.

    инвариантность пространственно-временного интервала между событиями (интервал между двумя событиями имеет в одной системе отсчета то же самое значение, что и в другой)

    инвариантность причинно-следственных связей

    единство пространства-времени (пространство и время представляют единую четырехмерную реальность – мы видим мир всегда пространственно-временным.)

    эквивалентность массы и энергии

Таким образом ,в теории Эйнштейна пространство и время относительны - результаты измерения длины и времени зависят от того, движется наблюдатель или нет.

3.5. Специальная теория относительности (СТО)

Введение в СТО

С теорией относительности мы знакомимся еще в средней школе. Эта теория объясняет нам явления окружающего мира таким образом, что это противоречит «здравому смыслу». Правда, еще тот же А. Эйнштейн в свое время заметил: «Здравый смысл – это предрассудки, которые складываются в возрасте до восемнадцати лет».

Еще в XVIII в. ученые пытались ответить на вопросы о том, как передается гравитационное взаимодействие и как распространяется свет (позже вообще любые электромагнитные волны). Поиски ответов на эти вопросы и явились причиной разработки теории относительности.

В XIX в. физики были убеждены, что существует так называемый эфир (мировой эфир, светоносный эфир). По представлениям прошлых столетий, это некая всепроникающая всезаполняющая среда. Развитие физики во второй половине XIX в. требовало от ученых максимально конкретизировать представления об эфире. Если предположить, что эфир подобен газу, то в нем могли бы распространяться только продольные волны, а электромагнитные волны – поперечные. Непонятно, как в таком эфире могли бы двигаться небесные тела. Имелись и другие серьезные возражения против эфира. В то же время шотландский физик Джеймс Максвелл (1831–1879) создал теорию электромагнитного поля, из которой, в частности, следовала величина конечной скорости распространения этого поля в пространстве – 300 000 км/с. Немецкий физик Генрих Герц (1857–1894) доказал опытным путем идентичность света, тепловых лучей и электромагнитного «волнового движения». Он определил, что электромагнитная сила действует со скоростью 300 000 км/с. Больше того, Герц установил, что «электрические силы могут отделяться от весомых тел и существовать далее самостоятельно как состояние или изменение пространства». Однако ситуация с эфиром ставила много вопросов, и для отмены этого понятия требовался прямой эксперимент. Идею его сформулировал еще Максвелл, предложивший использовать в качестве движущегося тела Землю, которая перемещается по орбите со скоростью 30 км/с. Такой опыт требовал крайне высокой точности измерений. Эту труднейшую задачу в 1881 г. решили американские физики А. Майкельсон и Э. Морли. Согласно гипотезе «неподвижного эфира», можно наблюдать «эфирный ветер» при движении Земли сквозь «эфир», а скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления движения Земли в эфире (то есть свет направляется по движению Земли и против). Скорости при наличии эфира должны были быть различными. Но они оказались неизменными. Это показывало, что эфира нет. Этот отрицательный результат стал подтверждением теории относительности. Опыт Майкельсона и Морли по определению скорости света неоднократно повторялся позднее, в 1885–1887 гг., с тем же результатом.

В 1904 г. на научном конгрессе французский математик Анри Пуанкаре (1854–1912) высказал мнение, что в природе не может быть скоростей, больших скорости света. Тогда же А. Пуанкаре сформулировал принцип относительности как всеобщий закон природы. В 1905 г. он писал: «Невозможность доказать путем опытов абсолютное движение Земли является, очевидно, общим законом природы». Здесь же он указывает на преобразования Лоренца и на общую связь пространственных и временных координат.

Альберт Эйнштейн (1879–1955), создавая специальную теорию относительности, о результатах Пуанкаре еще не знал. Позже Эйнштейн напишет: «Я совершенно не понимаю, почему меня превозносят как создателя теории относительности. Не будь меня, через год это бы сделал Пуанкаре, через два года сделал бы Минковский, в конце концов, более половины в этом деле принадлежит Лоренцу. Мои заслуги преувеличены». Однако Лоренц со своей стороны в 1912 г. писал: «Заслуга Эйнштейна состоит в том, что он первым выразил принцип относительности в виде всеобщего, строгого закона».


Два постулата Эйнштейна в СТО

Для описания физических явлений Галилей ввел понятие инерциальной системы. В такой системе тело, на которое не действует какая-либо сила, находится в покое или в состоянии равномерного прямолинейного движения. Законы, описывающие механическое движение, в различных инерциальных системах одинаково справедливы, то есть не изменяются при переходе от одной системы координат к другой. Например, если пассажир идет в движущемся вагоне поезда в направлении его движения со скоростью v 1 = 4 км/ч, а поезд движется со скоростью v 2 = 46 км/ч, то скорость пассажира относительно железнодорожного полотна будет v = v 1 + v 2 = 50 км/ч, то есть здесь имеется сложение скоростей. По «здравому смыслу» это незыблемый факт:

v = v 1 + v 2

Однако в мире больших скоростей, соизмеримых со скоростью света, указанная формула сложения скоростей просто неверна. В природе свет распространяется со скоростью с = 300 000 км/с независимо от того, в какую сторону по отношению к наблюдателю движется источник света.

В 1905 г. в немецком научном журнале «Анналы физики» 26-летний Альберт Эйнштейн опубликовал статью «Об электродинамике движущихся тел». В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной, теории относительности (СТО), изменившей классические представления о пространстве и времени.

В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла – это принцип постоянства скорости света в вакууме, которая примерно равна 300 000 км/с.

Скорость света – это самая большая скорость в нашей Вселенной. Больше скорости 300 000 км/с в окружающем нас мире быть не может.

В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости v е = 0,9999999 С, где v е, С – скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:


Здесь m e0 – масса покоя электрона, m e – масса электрона на скорости v e .

Достичь скорости света электрон не может Однако существуют микрочастицы, которые имеют скорость света, их называют «люксоны».

К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.

Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях


где E = m 0 c 2 – энергия покоя частицы с массой покоя m 0 ,а E K – кинетическая энергия движущейся частицы.

Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m 0 c 2). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса – меру инерции.

При скоростях релятивистских, близких к скорости света:


где E – энергия, m – масса частицы, m – масса покоя частицы, с – скорость света в вакууме.

Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.


Релятивистские эффекты

Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.

В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:

1. Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc 2 ). Сообщить телу бесконечную энергию невозможно.

2. Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.

Эффект замедления времени сказался бы не только на часах внутри корабля, но и на всех процессах, протекающих на нем, а также на биологических ритмах космонавтов. Однако фотонную ракету нельзя рассматривать как инерциальную систему, ибо она во время разгона и торможения движется с ускорением (а не равномерно и прямолинейно).

В теории относительности предложены принципиально новые оценки пространственно-временных отношений между физическими объектами. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же – t 2 = t L а пространственная координата изменяется по уравнению x 2 = x 1 – vt. В теории относительности применяются так называемые преобразования Лоренца:


Из отношений видно, что пространственные и временные координаты зависят друг от друга. Что касается сокращения длины в направлении движения, то


а ход времени замедляется:


В 1971 г. в США был поставлен эксперимент по определению замедления времени. Изготовили двое совершенно одинаковых точных часов. Одни часы оставались на земле, а другие помещались в самолет, который летал вокруг Земли. Самолет, летящий по круговой траектории вокруг Земли, движется с некоторых ускорением, и значит, часы на борту самолета находятся в другой ситуации по сравнению с часами, покоящимися на земле. В соответствии с законами теории относительности часы-путешественники должны были отстать от покоящихся на 184 нс, а на самом деле отставание составило 203 нс. Были и другие эксперименты, в которых проверялся эффект замедления времени, и все они подтвердили факт замедления. Таким образом, разное течение времени в системах координат, движущихся относительно друг друга равномерно и прямолинейно, является непреложным экспериментально установленным фактом.


Общая теория относительности

После опубликования специальной теории относительности в 1905 г. А. Эйнштейн обратился к современному представлению тяготения. В 1916 г. он опубликовал общую теорию относительности (ОТО), которая с современных позиций объясняет теорию тяготения. Она основывается на двух постулатах специальной теории относительности и формулирует третий постулат – принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIX в. в трудах русского математика Н. И. Лобачевского, немецкого – Б. Римана, венгерского – Я. Больяйя.

Геометрия нашего пространства оказалась неевклидовой.

Тема: Специальная теория относительности. Постулаты теории относительности

Теория относительности Эйнштейна -

это Акрополь человеческой мысли.

Цели урока: Познакомить учащихся со специальной теорией относительности, ввести основные понятия,раскрыть содержание основных положений СТО, познакомить с выводами СТО и опытными фактами, которые подтверждают их

Ход урока

Организационный момент.

2. Актуализация знаний.

3. Новая тема.

Запись новой темы в тетрадях: «Специальная теория относительности. Постулаты теории относительности». (слайд 1)

Определение СТО . (слайд 2)

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Из истории теории относительности.

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности. (слайд 3)

А. Эйнштейн Лоренц Г.А.

Портреты ученных. (слайд 4)

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае. (слайд 5)

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости.

Фундаментальность специальной теории относительности для физических теорий, построенных на её основе, привела в настоящее время к тому, что сам термин «специальная теория относительности» практически не используется в современных научных статьях, обычно говорят лишь о релятивистской инвариантности отдельной теории.

Основные понятия СТО.

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам.

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t.

Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца.

Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца. (слайд 7)

1 принцип относительности.

Все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой (протекают одинаково во всех инерциальных системах отсчета).

Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна. (слайд 8)

2 принцип относительности.

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую. (слайд 9)

Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п. (слайд 10)

Пример.

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K" совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct, так как системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K" он будет находиться в точке O". Следовательно, центр сферического фронта одновременно находится в двух разных точках! (слайд 11)

Объяснение противоречий.

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t". Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую - так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия. (слайд 12)

Выучить определения, термины, постулаты.

Спасибо за внимание. (слайд 13)

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.