Кислотным оксидам соответствуют. Кислотные оксиды

Кислотные оксиды

Кислотные оксиды (ангидриды) – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами . Элементы в кислотных оксидах обычно проявляют степень окисления от IV до VII. Они могут взаимодействовать с некоторыми основными и амфотерными оксидами, например: с оксидом кальция CaO, оксидом натрия Na 2 О, оксидом цинка ZnO, либо с оксидом алюминия Al 2 O 3 (амфотерный оксид).

Характерные реакции

Кислотные оксиды могут реагировать с:

SO 3 + H 2 O → H 2 SO 4

2NaOH + CO 2 => Na 2 CO 3 + H 2 O

Fe 2 O 3 + 3CO 2 => Fe 2 (CO 3) 3

Кислотные оксиды могут быть получены из соответствующей кислоты:

H 2 SiO 3 → SiO 2 + H 2 O

Примеры

  • Оксид марганца(VII) Mn 2 O 7 ;
  • Оксид азота NO 2 ;
  • Оксид хлора Cl 2 O 5 , Cl 2 O 3

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Кислотные оксиды" в других словарях:

    Оксиды металлов - это соединения металлов с кислородом. Многие из них могут соединяться с одной или несколькими молекулами воды с образованием гидроксидов. Большинство оксидов являются основными, так как их гидроксиды ведут себя как основания. Однако некоторые… … Официальная терминология

    Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия

    Скульптура, пострадавшая от кислотного дождя Кислотный дождь все виды метеорологических осадков дождь, снег, град, туман, дождь со снегом, при котором наблюдается понижение pH дождевых осадков из за загрязнений воздуха кислотными оксидами (обычно … Википедия

    Географическая энциклопедия

    оксиды - Соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (наприме, Na2О, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды подразделяют на… … Справочник технического переводчика

    ОКСИДЫ - хим. соединения элементов с кислородом (устаревшее название окислы); один из важнейших классов хим. веществ. О. образуются чаще всего при непосредственном окислении простых и сложных веществ. Напр. при окислении углеводородов образуются О.… … Большая политехническая энциклопедия

    - (кислые дожди), характеризуются повышенным содержанием кислот (в основном серной); водородный показатель pH<4,5. Образуются при взаимодействии атмосферной влаги с транспортно промышленными выбросами (главным образом серы диоксид, а также азота … Современная энциклопедия

    Соединения элементов с кислородом. В О. степень окисления атома кислорода Ч2. К О. относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо ниды), и соед. фтора с кислородом… … Химическая энциклопедия

    Дождь, снег или дождь со снегом, имеющие повышенную кислотность. Кислотные осадки возникают главным образом из за выбросов оксидов серы и азота в атмосферу при сжигании ископаемого топлива (угля, нефти и природного газа). Растворяясь в… … Энциклопедия Кольера

    Оксиды - соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (например, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды… … Энциклопедический словарь по металлургии


Современная химическая наука представляет собой множество разнообразных отраслей, и каждая из них, помимо теоретической базы, имеет большое прикладное значение, практическое. Чего ни коснись, все кругом - продукты химического производства. Главные разделы - это неорганическая и органическая химия. Рассмотрим, какие основные классы веществ относят к неорганическим и какими свойствами они обладают.

Главные категории неорганических соединений

К таковым принято относить следующие:

  1. Оксиды.
  2. Соли.
  3. Основания.
  4. Кислоты.

Каждый из классов представлен большим разнообразием соединений неорганической природы и имеет значение практически в любой структуре хозяйственной и промышленной деятельности человека. Все главные свойства, характерные для этих соединений, нахождение в природе и получение изучаются в школьном курсе химии в обязательном порядке, в 8-11 классах.

Существует общая таблица оксидов, солей, оснований, кислот, в которой представлены примеры каждого из веществ и их агрегатное состояние, нахождение в природе. А также показаны взаимодействия, описывающие химические свойства. Однако мы рассмотрим каждый из классов отдельно и более подробно.

Группа соединений - оксиды

4. Реакции, в результате которых элементы меняют СО

Me +n O + C = Me 0 + CO

1. Реагент вода: образование кислот (SiO 2 исключение)

КО + вода = кислота

2. Реакции с основаниями:

CO 2 + 2CsOH = Cs 2 CO 3 + H 2 O

3. Реакции с основными оксидами: образование соли

P 2 O 5 + 3MnO = Mn 3 (PO 3) 2

4. Реакции ОВР:

CO 2 + 2Ca = C + 2CaO,

Проявляют двойные свойства, взаимодействуют по принципу кислотно-основного метода (с кислотами, щелочами, основными оксидами, кислотными оксидами). С водой во взаимодействие не вступают.

1. С кислотами: образование солей и воды

АО + кислота = соль + Н 2 О

2. С основаниями (щелочами): образование гидроксокомплексов

Al 2 O 3 + LiOH + вода = Li

3. Реакции с кислотными оксидами: получение солей

FeO + SO 2 = FeSO 3

4. Реакции с ОО: образование солей, сплавление

MnO + Rb 2 O = двойная соль Rb 2 MnO 2

5. Реакции сплавления с щелочами и карбонатами щелочных металлов: образование солей

Al 2 O 3 + 2LiOH = 2LiAlO 2 + H 2 O

Не образуют ни кислот, ни щелочей. Проявляют узко специфические свойства.

Каждый высший оксид, образованный как металлом, так и неметаллом, растворяясь в воде, дает сильную кислоту или щелочь.

Кислоты органические и неорганические

В классическом звучании (основываясь на позициях ЭД - электролитической диссоциации - Сванте Аррениуса) кислоты - это соединения, в водной среде диссоциирующие на катионы Н + и анионы остатков кислоты An - . Однако сегодня тщательно изучены кислоты и в безводных условиях, поэтому существует много разных теорий для гидроксидов.

Эмпирические формулы оксидов, оснований, кислот, солей складываются только из символов, элементов и индексов, указывающих их количество в веществе. Например, неорганические кислоты выражаются формулой H + кислотный остаток n- . Органические вещества имеют другое теоретическое отображение. Помимо эмпирической, для них можно записать полную и сокращенную структурную формулу, которая будет отражать не только состав и количество молекулы, но и порядок расположения атомов, их связь между собой и главную функциональную группу для карбоновых кислот -СООН.

В неорганике все кислоты делятся на две группы:

  • бескислородные - HBr, HCN, HCL и другие;
  • кислородсодержащие (оксокислоты) - HClO 3 и все, где есть кислород.

Также неорганические кислоты классифицируются по стабильности (стабильные или устойчивые - все, кроме угольной и сернистой, нестабильные или неустойчивые - угольная и сернистая). По силе кислоты могут быть сильными: серная, соляная, азотная, хлорная и другие, а также слабыми: сероводородная, хлорноватистая и другие.

Совсем не такое разнообразие предлагает органическая химия. Кислоты, которые имеют органическую природу, относятся к карбоновым кислотам. Их общая особенность - наличие функциональной группы -СООН. Например, НСООН (муравьиная), СН 3 СООН (уксусная), С 17 Н 35 СООН (стеариновая) и другие.

Существует ряд кислот, на которые особенно тщательно делается упор при рассмотрении данной темы в школьном курсе химии.

  1. Соляная.
  2. Азотная.
  3. Ортофосфорная.
  4. Бромоводородная.
  5. Угольная.
  6. Иодоводородная.
  7. Серная.
  8. Уксусная, или этановая.
  9. Бутановая, или масляная.
  10. Бензойная.

Данные 10 кислот по химии являются основополагающими веществами соответствующего класса как в школьном курсе, так и в целом в промышленности и синтезах.

Свойства неорганических кислот

К основным физическим свойствам нужно отнести в первую очередь различное агрегатное состояние. Ведь существует ряд кислот, имеющих вид кристаллов или порошков (борная, ортофосфорная) при обычных условиях. Подавляющее большинство же известных неорганических кислот представляет собой разные жидкости. Температуры кипения и плавления также варьируются.

Кислоты способны вызывать тяжелые ожоги, так как обладают силой, разрушающей органические ткани и кожный покров. Для обнаружения кислот используют индикаторы:

  • метилоранж (в обычной среде - оранжевый, в кислотах - красный),
  • лакмус (в нейтральной - фиолетовый, в кислотах - красный) или некоторые другие.

К важнейшим химическим свойствам можно отнести способность вступать во взаимодействие как с простыми, так и со сложными веществами.

Химические свойства неорганических кислот
С чем взаимодействуют Пример реакции

1. С простыми веществами-металлами. Обязательное условие: металл должен стоять в ЭХРНМ до водорода, так как металлы, стоящие после водорода, не способны вытеснить его из состава кислот. В результате реакции всегда образуется водород в виде газа и соль.

2. С основаниями. Итогом реакции являются соль и вода. Подобные реакции сильных кислот с щелочами носят название реакций нейтрализации.

Любая кислота (сильная) + растворимое основание = соль и вода

3. С амфотерными гидроксидами. Итог: соль и вода.

2HNO 2 + гидроксид бериллия = Be(NO 2) 2 (соль средняя) + 2H 2 O

4. С основными оксидами. Итог: вода, соль.

2HCL + FeO = хлорид железа (II) + H 2 O

5. С амфотерными оксидами. Итоговый эффект: соль и вода.

2HI + ZnO = ZnI 2 + H 2 O

6. С солями, образованными более слабыми кислотами. Итоговый эффект: соль и слабая кислота.

2HBr + MgCO 3 = бромид магния + H 2 O + CO 2

При взаимодействии с металлами одинаково реагируют не все кислоты. Химия (9 класс) в школе предполагает весьма неглубокое изучение таких реакций, однако и на таком уровне рассматриваются специфические свойства концентрированной азотной и серной кислоты при взаимодействии с металлами.

Гидроксиды: щелочи, амфотерные и нерастворимые основания

Оксиды, соли, основания, кислоты - все эти классы веществ имеют общую химическую природу, объясняющуюся строением кристаллической решетки, а также взаимным влиянием атомов в составе молекул. Однако если для оксидов можно было дать вполне конкретное определение, то для кислот и оснований это сделать сложнее.

Так же, как и кислоты, основаниями по теории ЭД называются вещества, способные в водном растворе распадаться на катионы металлов Ме n+ и анионы гидроксогрупп ОН - .

  • Растворимые или щелочи (сильные основания, изменяющие цвет индикаторов). Образованы металлами I, II групп. Пример: КОН, NaOH, LiOH (то есть учитываются элементы только главных подгрупп);
  • Малорастворимые или нерастворимые (средней силы, не изменяющие окраску индикаторов). Пример: гидроксид магния, железа (II), (III) и другие.
  • Молекулярные (слабые основания, в водной среде обратимо диссоциируют на ионы-молекулы). Пример: N 2 H 4, амины, аммиак.
  • Амфотерные гидроксиды (проявляют двойственные основно-кислотные свойства). Пример: берилия, цинка и так далее.

Каждая представленная группа изучается в школьном курсе химии в разделе "Основания". Химия 8-9 класса подразумевает подробное изучение щелочей и малорастворимых соединений.

Главные характерные свойства оснований

Все щелочи и малорастворимые соединения находятся в природе в твердом кристаллическом состоянии. При этом температуры плавления их, как правило, невысоки, и малорастворимые гидроксиды разлагаются при нагревании. Цвет оснований разный. Если щелочи белого цвета, то кристаллы малорастворимых и молекулярных оснований могут быть самой различной окраски. Растворимость большинства соединений данного класса можно посмотреть в таблице, в которой представлены формулы оксидов, оснований, кислот, солей, показана их растворимость.

Щелочи способны изменять окраску индикаторов следующим образом: фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

Химические свойства каждой группы оснований различны.

Химические свойства
Щелочей Малорастворимых оснований Амфотерных гидроксидов

I. Взаимодействуют с КО (итог -соль и вода):

2LiOH + SO 3 = Li 2 SO 4 + вода

II. Взаимодействуют с кислотами (соль и вода):

обычные реакции нейтрализации (смотрите кислоты)

III. Взаимодействуют с АО с образованием гидроксокомплекса соли и воды:

2NaOH + Me +n O = Na 2 Me +n O 2 + H 2 O, или Na 2

IV. Взаимодействуют с амфотерными гидроксидами с образованием гидроксокомплексных солей:

То же самое, что и с АО, только без воды

V. Взаимодействуют с растворимыми солями с образованием нерастворимых гидроксидов и солей:

3CsOH + хлорид железа (III) = Fe(OH) 3 + 3CsCl

VI. Взаимодействуют с цинком и алюминием в водном растворе с образованием солей и водорода:

2RbOH + 2Al + вода = комплекс с гидроксид ионом 2Rb + 3H 2

I. При нагревании способны разлагаться:

нерастворимый гидроксид = оксид + вода

II. Реакции с кислотами (итог: соль и вода):

Fe(OH) 2 + 2HBr = FeBr 2 + вода

III. Взаимодействуют с КО:

Me +n (OH) n + КО = соль + H 2 O

I. Реагируют с кислотами с образованием соли и воды:

(II) + 2HBr = CuBr 2 + вода

II. Реагируют с щелочами: итог - соль и вода (условие: сплавление)

Zn(OH) 2 + 2CsOH = соль + 2H 2 O

III. Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе:

Cr(OH) 3 + 3RbOH = Rb 3

Это большинство химических свойств, которые проявляют основания. Химия оснований достаточно проста и подчиняется общим закономерностям всех неорганических соединений.

Класс неорганических солей. Классификация, физические свойства

Опираясь на положения ЭД, солями можно назвать неорганические соединения, в водном растворе диссоциирующие на катионы металлов Ме +n и анионы кислотных остатков An n- . Так можно представить соли. Определение химия дает не одно, однако это наиболее точное.

При этом по своей химической природе все соли подразделяются на:

  • Кислые (имеющие в составе катион водорода). Пример: NaHSO 4.
  • Основные (имеющие в составе гидроксогруппу). Пример: MgOHNO 3 , FeOHCL 2.
  • Средние (состоят только из катиона металла и кислотного остатка). Пример: NaCL, CaSO 4.
  • Двойные (включают в себя два разных катиона металла). Пример: NaAl(SO 4) 3.
  • Комплексные (гидроксокомплексы, аквакомплексы и другие). Пример: К 2 .

Формулы солей отражают их химическую природу, а также говорят о качественном и количественном составе молекулы.

Оксиды, соли, основания, кислоты обладают различной способностью к растворимости, которую можно посмотреть в соответствующей таблице.

Если же говорить об агрегатном состоянии солей, то нужно заметить их однообразие. Они существуют только в твердом, кристаллическом или порошкообразном состоянии. Цветовая гамма достаточно разнообразна. Растворы комплексных солей, как правило, имеют яркие насыщенные краски.

Химические взаимодействия для класса средних солей

Имеют схожие химические свойства основания, кислоты, соли. Оксиды, как мы уже рассмотрели, несколько отличаются от них по этому фактору.

Всего можно выделить 4 основных типа взаимодействий для средних солей.

I. Взаимодействие с кислотами (только сильными с точки зрения ЭД) с образованием другой соли и слабой кислоты:

KCNS + HCL = KCL + HCNS

II. Реакции с растворимыми гидроксидами с появлением солей и нерастворимых оснований:

CuSO 4 + 2LiOH = 2LiSO 4 соль растворимая + Cu(OH) 2 нерастворимое основание

III. Взаимодействие с другой растворимой солью с образованием нерастворимой соли и растворимой:

PbCL 2 + Na 2 S = PbS + 2NaCL

IV. Реакции с металлами, стоящими в ЭХРНМ левее того, что образует соль. При этом вступающий в реакцию металл не должен при обычных условиях вступать во взаимодействие с водой:

Mg + 2AgCL = MgCL 2 + 2Ag

Это главные типы взаимодействий, которые характерны для средних солей. Формулы солей комплексных, основных, двойных и кислых сами за себя говорят о специфичности проявляемых химических свойств.

Формулы оксидов, оснований, кислот, солей отражают химическую сущность всех представителей данных классов неорганических соединений, а кроме того, дают представление о названии вещества и его физических свойствах. Поэтому на их написание следует обращать особое внимание. Огромное разнообразие соединений предлагает нам в целом удивительная наука - химия. Оксиды, основания, кислоты, соли - это лишь часть необъятного многообразия.

В уроке 32 «Химические свойства оксидов » из курса «Химия для чайников » узнаем о всех химических свойствах кислотных и основных оксидов, рассмотрим с чем они реагируют и что при этом образуется.

Так как химический состав кислотных и основных оксидов различен, они отличаются своими химическими свойствами.

1. Химические свойства кислотных оксидов

а) Взаимодействие с водой
Вы уже знаете, что продукты взаимодействия оксидов с водой называются «гидроксиды»:

Поскольку оксиды, вступающие в эту реакцию, делятся на кислотные и основные, то и образующиеся из них гидроксиды также делятся на кислотные и основные. Таким образом, кислотные оксиды (кроме SiO 2) реагируют с водой, образуя кислотные гидроксиды, которые являются кислородсодержащими кислотами:

Каждому кислотному оксиду соответствует кислородсодержащая кислота, относящаяся к кислотным гидроксидам. Несмотря на то что оксид кремния SiO 2 с водой не реагирует, ему тоже соответствует кислота H 2 SiO 3 , но ее получают другими способами.

б) Взаимодействие с щелочами
Все кислотные оксиды реагируют со щелочами по общей схеме:

В образующейся соли валентность атомов металла такая же, как и в исходной щелочи. Кроме того, в состав соли входит остаток той кислоты, которая соответствует данному кислотному оксиду .

Например, если в реакцию вступает кислотный оксид CO 2 , которому соответствует кислота H 2 CO 3 CO 3 , валентность которого, как вы уже знаете, равна II:

Если же в реакцию вступает кислотный оксид N 2 О 5 , которому соответствует кислота HNO 3 (указана в квадратных скобках), то в составе образующейся соли будет остаток этой кислоты - NO 3 с валентностью, равной I:

Поскольку все кислотные оксиды реагируют со щелочами с образованием солей и воды, этим оксидам можно дать другое определение.

Кислотными называются оксиды, реагирующие со щелочами с образованием солей и воды.

в) Реакции с основными оксидами

Кислотные оксиды реагируют с основными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию. Например, если в реакцию вступает кислотный оксид SO 3 , которому соответствует кислота H 2 SO 4 (указана в квадратных скобках), то в состав соли будет входить остаток этой кислоты - SO 4 , валентность которого равна II:

Если же в реакцию вступает кислотный оксид Р 2 О 5 , которому соответствует кислота Н 3 РО 4 , то в составе образующейся соли будет остаток этой кислоты - РO 4 с валентностью, равной III.

2. Химические свойства основных оксидов

а) Взаимодействие с водой

Вы уже знаете, что в результате взаимодействия основных оксидов с водой образуются основные гидроксиды, которые иначе называются основаниями:

К таким основным оксидам относятся оксиды: Li 2 O, Na 2 O, K 2 O, CaO, BaO.

При написании уравнений соответствующих реакций следует помнить, что валентность атомов металла в образующемся основании равна его валентности в исходном оксиде .

Основные оксиды, образованные такими металлами, как Cu, Fe, Cr, с водой не реагируют. Соответствующие им основания получают другими способами.

б) Взаимодействие с кислотами

Практически все основные оксиды реагируют с кислотами с образованием солей по общей схеме:

Следует помнить, что в образующейся соли валентность атомов металла такая же, как в исходном оксиде, а валентность кислотного остатка такая же, как в исходной кислоте .

Поскольку все основные оксиды реагируют с кислотами с образованием солей и воды, этим оксидам можно дать другое определение.

Основными называются оксиды, реагирующие с кислотами с образованием солей и воды.

в) Взаимодействие с кислотными оксидами

Основные оксиды реагируют с кислотными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Кроме того, следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию . Например, если в реакцию вступает кислотный оксид N 2 O 5 , которому соответствует кислота HNO 3 , то в состав соли будет входить остаток этой кислоты - NO 3 , валентность которого, как вы уже знаете, равна I.

Поскольку рассмотренные нами кислотные и основные оксиды в результате различных реакций образуют соли, их называют солеобразующими . Существует, однако, небольшая группа оксидов, которые в аналогичных реакциях не образуют солей, поэтому их называют несолеобразующими .

Краткие выводы урока:

  1. Все кислотные оксиды реагируют со щелочами с образованием солей и воды.
  2. Все основные оксиды реагируют с кислотами с образованием солей и воды.
  3. Кислотные и основные оксиды являются солеобразующими. Несолеобразующие оксиды - CO, N 2 О, NO.
  4. Основания и кислородсодержащие кислоты являются гидроксидами.

Надеюсь урок 32 «Химические свойства оксидов » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Оксиды, их классификация и свойства - это основа такой важной науки, как химия. Их начинают изучать в первый год обучения химии. В таких точных науках, как математика, физика и химия, весь материал связан между собой, именно поэтому неусвоение материала влечет за собой непонимание новых тем. Поэтому очень важно разобраться в теме оксидов и полностью в ней ориентироваться. Об этом мы с вами сегодня и постараемся поговорить более подробно.

Что такое оксиды?

Оксиды, их классификация и свойства - это то, что нужно понять первостепенно. Итак, что же такое оксиды? Вы помните это из школьной программы?

Оксиды (или оксилы) - бинарные соединения, в состав которых входят атомы электроотрицательного элемента (менее электроотрицательный, чем кислород) и кислорода со степенью окисления -2.

Окислы - это невероятно распространенные на нашей планете вещества. Примеры оксидного соединения: вода, ржавчина, некоторые красители, песок и даже углекислый газ.

Образование оксидов

Окислы можно получить самыми различными способами. Образование окислов также изучает такая наука, как химия. Оксиды, их классификация и свойства - вот, что должны знать ученые, чтобы понять, как образовался тот или иной оксид. Например, они могут быть получены путем прямого соединения атома (или атомов) кислорода с химическим элементом - это взаимодействие химических элементов. Однако есть и косвенное образование оксидов, это когда оксиды образуются путем разложения кислот, солей или оснований.

Классификация оксидов

Оксиды и их классификация зависят от того, как они образовались. По своей классификации окислы делятся всего на две группы, первая из которых солеобразующие, а вторая несолеобразующие. Итак, рассмотрим подробнее обе группы.

Солеобразующие оксиды - это довольно большая группа, которая делится на амфотерные, кислотные и основные оксиды. В результате любой химической реакции солеобразующие оксиды образуют соли. Как правило, в состав оксидов солеобразующих входят элементы металлов и неметаллов, которые в результате химической реакции с водой образуют кислоты, но при взаимодействии с основаниями образуют соответствующие кислоты и соли.

Несолеобразующие окислы - это такие окислы, которые в результате химической реакции не образуют соли. Примерами таких окислов могут служить и углерода.

Амфотерные оксиды

Оксиды, их классификация и свойства - очень важные в химии понятия. В состав солеобразующих входят оксиды амфотерные.

Амфотерные оксиды - это такие окислы, которые могут проявлять основные или кислотные свойства, в зависимости от условий химических реакций (проявляют амфотерность). Такие окислы образуются переходными металлами (медь, серебро, золото, железо, рутений, вольфрам, резерфордий, титан, иттрий и многие другие). Амфотерные окислы реагируют с сильными кислотами, а в результате химической реакции они образуют соли этих кислот.

Кислотные оксиды

Или ангидриды - это такие окислы, которые в химических реакциях проявляют а также образуют кислородсодержащие кислоты. Ангидриды всегда образуются типичными неметаллами, а также некоторыми переходными химическими элементами.

Оксиды, их классификация и химические свойства - это важные понятия. Например, у кислотных оксидов химические свойства совершенно отличаются от амфотерных. Например, когда ангидрид взаимодействует с водой, образуется соответствующая кислота (исключение составляет SiO2 - Ангидриды взаимодействуют с щелочами, а в результате таких реакций выделяется вода и сода. При взаимодействии с образуется соль.

Основные оксиды

Основные (от слова "основание") окислы - это оксиды химических элементов металлов со степенями окисления +1 или +2. К ним относятся щелочные, щелочноземельные металлы, а также химический элемент магний. Основные окислы отличаются от других тем, что именно они способны реагировать с кислотами.

Основные окислы взаимодействуют с кислотами, в отличии от кислотных оксидов, а также с щелочами, водой, другими оксидами. В результате этих реакций, как правило, образуются соли.

Свойства оксидов

Если внимательно изучить реакции различных оксидов, можно самостоятельно сделать выводы о том, какими химическими свойствами оксилы наделены. Общее химическое свойство абсолютно всех оксидов заключается в окислительно-восстановительном процессе.

Но тем не менее, все окислы отличаются друг от друга. Классификация и свойства оксидов - это две взаимосвязанные темы.

Несолеобразующие оксиды и их химические свойства

Несолеобразующие окислы - это такая группа оксидов, которая не проявляет ни кислотных, ни основных, ни амфотерных свойств. В результате химических реакций с несолеобразующими оксидами никаких солей не образуется. Раньше такие оксиды называли не несолеобразующими, а безразличными и индиффирентными, но такие названия не соответсвуют свойствам несолеобразующих оксидов. По своим свойствам эти оксилы вполне способны к химическим реакциям. Но несолебразующих оксидов очень мало, они образованы одновалентными и двухвалентными неметаллами.

Из несолеобразующих оксидов в результате химической реакции могут быть получены солеобразующие оксиды.

Номенклатура

Практически все оксиды принято называть так: слово "оксид", после чего следует название химического элемента в родительном падеже. Например, Al2O3 - это оксид алюминия. На химическом языке этот окисл читается так: алюминий 2 о 3. Некоторые химические элементы, такие как медь, могут иметь несколько степеней оксиления, соответственно, оксиды тоже будут разными. Тогда оксид CuO - это оксид меди (два), то есть со степенью оксиления 2, а оксид Cu2O - это оксид меди (три), который имеет степень оксиления 3.

Но существуют и другие наименования оксидов, которые выделяют по числу в соединении атомов кислорода. Монооксидом или моноокисью называют такие оксиды, в которых содержится всего один атом кислорода. Диоксидами называют такие оксилы, в которых содержится два атома кислорода, о чем сообщается приставка "ди". Триоксидами называют такие оксиды, в которых содержится уже три атома кислорода. Такие наименования как монооксид, диоксид и триоксид, уже устарели, но часто встречаются в учебниках, книгах и других пособиях.

Существуют и так называемые тривиальные названия оксидов, то есть те, которые сложились исторически. Например, CO - это окисл или монооксид углерода, но даже химики чаще всего называют это вещество угарным газом.

Итак, оксид - это соединение кислорода с химическим элементом. Основной наукой, которая изучает их образование и взаимодействия, является химия. Оксиды, их классификация и свойства - это несколько важных тем в науке химия, не поняв которую нельзя понять все остальное. Окислы - это и газы, и минералы, и порошки. Некоторые окислы стоит подробно знать не только ученым, но и обычным людям, ведь они даже могут быть опасны для жизни на этой земле. Окислы - это тема очень интересная и достаточно легкая. Соединения оксидов очень часто встречаются в повседневной жизни.

Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N 2 0, NO.


Солеобразующие оксиды:


Основные. Оксиды, гидраты которых являются основания ми. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na 2 O - оксид натрия, СаО - оксид кальция, CuO - оксид меди (II), СоО - оксид кобальта (II), Bi 2 O 3 - оксид висмута (III), Mn 2 O 3 - оксид марганца (III).


Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl 2 O 3 - оксид алюминия, Cr 2 O 3 - оксид хрома (III), SnO 2 - оксид олова (IV), МnO 2 - оксид марганца (IV), ZnO - оксид цинка, ВеО - оксид бериллия.


Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов. Примеры: Р 2 О 3 - оксид фосфора (III), СO 2 - оксид углерода (IV), N 2 O 5 - оксид азота (V), SO 3 - оксид серы (VI), Cl 2 O 7 - оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7. Примеры: Sb 2 O 5 - оксид сурьмы (V). СrОз - оксид хрома (VI), МnОз - оксид марганца (VI), Мn 2 O 7 - оксид марганца (VII).

Изменение характера оксидов при увеличении степени окисления металла

Физические свойства

Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета - твердые вещества. Оксид серы (VI) SO 3 - бесцветная летучая жидкость, а оксид углерода (IV) СО 2 - бесцветный газ при обычных условиях.

Агрегатное состояние


CaO, СuО, Li 2 O и др. основные оксиды; ZnO, Аl 2 O 3 , Сr 2 O 3 и др. амфотерные оксиды; SiO 2 , Р 2 O 5 , СrO 3 и др. кислотные оксиды.



SO 3 , Cl 2 O 7 , Мn 2 O 7 и др..


Газообразные:


CO 2 , SO 2 , N 2 O, NO, NO 2 и др..

Растворимость в воде

Растворимые:


а) основные оксиды щелочных и щелочноземельных металлов;


б) практически все кислотные оксиды (исключение: SiO 2).


Нерастворимые:


а) все остальные основные оксиды;


б) все амфотерные оксиды


Химические свойства

1. Кислотно-основные свойства


Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:





(только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO 2).



Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:



2. Окислительно - восстановительные свойства


Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. - окислительные.


Примеры реакций, в которых оксиды выступают в роли восстановителей:


Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.


2C +2 O + O 2 = 2C +4 O 2


2S +4 O 2 + O 2 = 2S +6 O 3


2N +2 O + O 2 = 2N +4 O 2


Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.


C +2 O + FeO = Fe + 2C +4 O 2


C +2 O + H 2 O = H 2 + 2C +4 O 2


Примеры реакций, в которых оксиды выступают в роли окислителей:


Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.


C +4 O 2 + C = 2C +2 O


2S +6 O 3 + H 2 S = 4S +4 O 2 + H 2 O


C +4 O 2 + Mg = C 0 + 2MgO


Cr +3 2 O 3 + 2Al = 2Cr 0 + 2Al 2 O 3


Cu +2 O + H 2 = Cu 0 + H 2 O


Использование оксидов малоактивных металлов дпя окисления органических веществ.




Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;


например:


2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2 O

Способы получения

1. Взаимодействие простых веществ - металлов и неметаллов - с кислородом:


4Li + O 2 = 2Li 2 O;


2Cu + O 2 = 2CuO;



4P + 5O 2 = 2P 2 O 5


2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:


Cu(OH) 2 = CuO + H 2 O


2Al(OH) 3 = Al 2 O 3 + 3H 2 O


H 2 SO 3 = SO 2 + H 2 O


H 2 SiO 3 = SiO 2 + H 2 O


3. Разложение некоторых солей:


2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


CaCO 3 = CaO + CO 2


(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O


4. Окисление сложных веществ кислородом:


CH 4 + 2O 2 = CO 2 + H 2 O


4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2


4NH 3 + 5O 2 = 4NO + 6H 2 O


5.Восстановление кислот-окислителей металлами и неметаллами:


Cu + H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O


10HNO 3 (конц) + 4Ca = 4Ca(NO 3) 2 + N 2 O + 5H 2 O


2HNO 3 (разб) + S = H 2 SO 4 + 2NO


6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).