Наиболее уязвимыми для воздействия солнечной радиации является. Солнечная радиация и её влияние на организм человека и климат

Коротковолновое излучение Солнца

Ультрафиолетовое и рентгеновское излучения исходят исходят в основном от верхних слоев хромосферы и короны. Это установили, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда испускает невидимое коротковолновое излучение, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское – в десятки и сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется изо дня в день, резко возрастая, когда на происходят вспышки.

Ультрафиолетовое и рентгеновское излучения частично ионизуют слои земной атмосферы, образуя на высотах 200 – 500 км от поверхности Земли ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на нем явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. После наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению и даже к временному прекращению радиосвязи.

Особое влияние ученые уделяют исследованию озонового слоя в земной атмосфере. Озон образуется в результате фотохимических реакций (поглощение света молекулами кислорода) в стратосфере, и там сосредоточена его основная масса. Всего в земной атмосфере примерно 3 10 9 т озона. Это очень мало: толщина слоя чистого озона у поверхности Земли не превысила бы и 3 мм! Но роль озонового слоя, простирающегося на высоте нескольких десятков километров над поверхностью Земли, исключительно велика, потому что он защищает все живое от воздействия опасного коротковолнового (и прежде всего ультрафиолетового) излучения Солнца. Содержание озона непостоянно на разных широтах и в разные времена года. Оно может уменьшаться (иногда очень значительно) в результате различных процессов. Этому могут способствовать, например, выбросы в атмосферу большого количества разрушающих озон хлорсодержащих веществ промышленного происхождения или аэрозольные выбросы, а также выбросы, сопровождающие извержения вулканов. Области резкого снижения уровня озона (“озоновые дыры”) обнаруживались над разными регионами нашей планеты, причем не только над Антарктидой и рядом других территорий Южного полушария Земли, но и над Северным. В 1992 г. стали появляться тревожные сообщения о временном истощении озонового слоя над севером европейской части России и уменьшении содержания озона над Москвой и Санкт-Петербургом. Ученые, осознавая глобальный характер проблемы, организуют в масштабах всей планеты экологические исследования, включающие прежде всего глобальную систему непрерывного наблюдения за состоянием озонового слоя. Разработаны и подписаны международные соглашения по охране озонового слоя и ограничению производства озоноразрушающих веществ.

Радиоизлучение Солнца

Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда обнаружилось, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучают хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Это радиоизлучение и достигает Земли. Радиоизлучение Солнца имеет две составляющие – постоянную, почти не меняющуюся по интенсивности, и переменную (всплески, “шумовые бури”).

Радиоизлучение спокойного Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время больших вспышек радиоизлучение Солнца возрастает в тысячи и даже в миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу.

Корпускулярное излучение Солнца

Ряд геофизических явлений (магнитные бури, т.е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) тоже связан с солнечной активностью. Но эти явления происходят через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а корпускулами (протонами и электронами, образующими разреженную плазму), которые с опозданием (на 1-2 сут) проникают в околоземное пространство, поскольку движутся со скоростями 400 – 1000 км/c.

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Солнечная корона – источник постоянного истечения плазмы (солнечного ветра), которое происходит во всех направлениях. Солнечный ветер, создаваемый непрерывно расширяющейся короной, охватывает движущиеся вблизи Солнца планеты и . Вспышки сопровождаются “порывами” солнечного ветра. Эксперименты на межпланетных станциях и искусственных спутниках Земли позволили непосредственно обнаружить солнечный ветер в межпланетном пространстве. Во время вспышек и при спокойном истечении солнечного ветра в межпланетное пространство проникают не только корпускулы, но и связанное с движущейся плазмой магнитное поле.

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

Ответ на вопрос, что такое солнечное излучение, так это весь спектр света, выделяемого солнцем. Он включает в себя видимый свет и все другие частоты излучения в электромагнитном спектре. По сравнению со знакомыми источниками энергии на Земле, Солнце излучает огромное количество энергии. Тип излучения, выделяемого солнцем, является продуктом его высокой температуры, который вызван ядерным слиянием внутри ядра Солнца. Солнечное излучение изучается учеными, потому что влияние Солнца, на организм человека и планету в целом, очень огромное.

Только небольшая часть солнечной радиации когда-либо достигает Земли: большинство из них излучается в пустое пространство. Однако фракция, которая действительно достигает Земли, намного больше, чем количество энергии, потребляемой на Земле такими источниками, как ископаемое топливо. Огромное количество энергии, излучаемой солнцем, можно объяснить большой массой и высокой температурой.

Виды солнечной радиации

Полное солнечное излучение, которое часто называют глобальным излучением, представляет собой сумму прямого, диффузного и отраженного излучения. Доступное нам солнечное излучение всегда представляет собой смесь вышеупомянутых трех компонентов.

Виды солнечного излучения

Прямое излучение

Прямое излучение получено от солнечных лучей, движущихся от солнца до земли напрямую. Направление излучения также называют излучением пучка или прямым лучом излучения. Поскольку прямое излучение — это солнечные лучи, движущиеся по прямой, формируются тени объектов, которые возникают на пути солнечных лучей. Тени указывают на наличие прямого излучения.
В солнечных районах и в течение лета прямое излучение составляет почти 70-80% от общей радиации. В солнечных установках используется солнечное отслеживание для поглощения большей части прямого излучения. Если солнечная система слежения не установлена, ценное прямое излучение будет не захвачено.

Диффузное излучение

Прямое излучение имеет фиксированное направление. Диффузное излучение не имеет фиксированного направления. Когда солнечные лучи рассеиваются частицами, присутствующими в атмосфере, эти рассеянные солнечные лучи объясняют диффузное излучение.

По мере увеличения загрязнения количество диффузного излучения также увеличивается. В холмистых районах и во время зимы процент диффузного излучения увеличивается. Максимальное количество рассеянного излучения захватывается солнечными батареями, когда они удерживаются горизонтально. Это означает, что в случае солнечных панелей, которые находятся под углом для отслеживания большей части прямого излучения, количество рассеянного излучения, захваченного панелями, будет снижаться. Чем больше угол, который солнечные панели создают с землей, тем меньше будет количество рассеянного излучения, захваченного панелями.

Отраженное и глобальное излучение

Отраженное излучение — это компонент излучения, который отражается от поверхностей, отличных от воздушных частиц. Радиация, отраженная от холмов, деревьев, домов, водоемов, отражает отраженное излучение. Отраженное излучение обычно составляет небольшой процент в глобальном излучении, но может вносить до 15% в заснеженные районы.

Глобальное излучение представляет собой сумму прямого, диффузного и отраженного излучения. Солнечное излучение представляет собой комбинацию ультрафиолетовых и инфракрасных волн. Каждая из этих составных частей по-своему влияет на организм.

Влияние солнечной радиации на организм человека

Говоря о влиянии солнца на организм человека, невозможно определить точно. Какое воздействие на здоровье человека оказывается, вред или польза. Лучи Солнца выделяют ультрафиолетовое и инфракрасное излучение. Лучи солнца — это как килокалории, полученные из пищи. Их дефицит приводит к истощению, и в избыточных количествах они вызывают ожирение. Так и в этой ситуации. Умеренное количество солнечной радиации оказывает положительное влияние на организм, тогда как избыток ультрафиолетового излучения провоцирует появление ожогов и развитие многочисленных заболеваний. Влияние

Положительное влияние инфракрасного излучения

Основная особенность инфракрасных лучей — они создают тепловой эффект, которые оказывают положительное влияние на организм человека. Нагревательный элемент способствует расширению кровеносных сосудов и нормализации кровообращения. Тепло оказывает расслабляющее действие на мышцы, обеспечивая легкий противовоспалительный и обезболивающий эффект. Под воздействием тепла увеличивается обмен веществ, нормализуются процессы усвоения биологически активных компонентов. Инфракрасное излучение солнца стимулирует мозг и зрительный аппарат.

Интересно! Благодаря солнечному излучению синхронизирует биологические ритмы тела, начиная с режимов сна и бодрствования. Лечение инфракрасными лучами солнца улучшает состояние кожи и устраняет угри. Теплый свет поднимает настроение и улучшает эмоциональный фон человека. А также улучшают качество спермы у мужчин и потенцию.

Положительное влияние ультрафиолетового излучения

Несмотря на все споры о негативном влиянии ультрафиолетового излучения на организм, его отсутствие может привести к серьезным проблемам со здоровьем. Это один из важнейших факторов существования. И нехватка ультрафиолетового света в организме, привносит такие изменения:
Во-первых, ослабляет иммунную систему (прежде всего влияние оказывается на клетку в организме). Это связано с нарушением поглощения витаминов и минералов, нарушением метаболизма на клеточном уровне.


Солнце восполняет нехватку витамина Д

Существует тенденция к развитию новых или обострению хронических заболеваний, чаще всего возникающих осложнений. Отмеченналетаргия, синдром хронической усталости, снижение уровня эффективности. Отсутствие ультрафиолетового света для детей предотвращает образование витамина D и вызывает замедление. Однако нужно понять, что чрезмерная солнечная активность не принесет пользу организму.

Отрицательное воздействие солнца

Время экспозиции инфракрасных и ультрафиолетовых волн должно быть строго ограничено. Чрезмерная солнечная радиация:

  • может спровоцировать ухудшение общего состояния тела (так называемый термический шок из-за перегрева);
  • отрицательно влияют на кожу, они могут вызывать постоянные изменения;
  • ухудшает зрение;
  • вызывает гормональные нарушения в организме;
  • может спровоцировать развитие аллергических реакций;
  • может спровоцировать негативное влияние на геном человека и на структуру ДНК человека;
  • негативно влияет на плод;
  • негативно влияет на психику человека.

Влияние солнца на кожу

Чрезмерное количество солнечной радиации приводит к серьезным проблемам с кожей. В краткосрочной перспективе вы рискуете ожогами или дерматитом. Это самая маленькая проблема, с которой вы можете столкнуться, очарованная солнцем в жаркий день. Если эта ситуация повторяется с завидной регулярностью, солнечное излучение станет стимулом к образованию злокачественных опухолей в меланоме кожи.

Кроме того, ультрафиолетовое облучение обезвоживает кожу, делая ее тонкой и чувствительной. Но постоянное место жительства под прямыми лучами ускоряет процесс старения, вызывая появление ранних морщин.

Отрицательное воздействие на видение

Эффект солнечного света на визуальном аппарате огромен. Действительно, благодаря лучам света мы получаем информацию о мире вокруг нас. Искусственное освещение в некотором роде может быть альтернативой естественному свету, но с точки зрения чтения и письма с помощью лампы света увеличивается напряжение на глазах.
Говоря о негативном воздействии на человека и о видимом солнечном свете, это означает повреждение глаз при длительном воздействии солнца без солнцезащитных очков.
Из-за дискомфорта, с которым вы можете столкнуться, вы можете выделить боли в глазах, покраснение, светобоязнь. Самое серьезное поражение сетчатки горит. Также возможно высушить кожу, образовать морщины.

Воздействие радиации на организм человека в космосе

Космической радиации является одной из главных опасностей для здоровья от космического полета. Это опасно, потому что он имеет достаточную энергию, чтобы изменить или разрушить ДНК молекул, которые могут повредить или убить клетки. Это может привести к проблемам со здоровьем, начиная от острых эффектов длительное воздействие.

Острые последствия, такие как изменения, в крови, диарея, тошнота и рвота, мягкие и восстановить. Другие эффекты острого облучения гораздо более серьезные, например повреждения центральной нервной системы или даже смерть. Такое облучение не должно возникнуть в результате воздействия космического излучения, за исключением, если космонавт подвергается воздействию солнечных частиц, таких как солнечная вспышка, которая производит высокие дозы радиации.

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм (см. рис.1.1). Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива.

Рисунок 1.1 – Влияние солнечного излучения на Землю

Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество. Основным источником энергии практически всех природных процессов, происходящих на поверхности Земли и в атмосфере, является энергия, поступающая на Землю от Солнца в виде солнечной радиации.

На рисунке 1.2 представлена классификационная схема, которая отражает процессы, возникающие на поверхности Земли и в ее атмосфере под действием солнечного излучения.

Результатами прямой солнечной деятельности являются тепловой эффект и фотоэффект, вследствие чего Земля получает тепловую энергию и свет. Результатами косвенной деятельности Солнца являются соответствующие эффекты в атмосфере, гидросфере и геосфере, служащие причиной появления ветра, волн, обуславливающие течение рек, создающие условия для сохранения внутреннего тепла Земли.

Рисунок 1.2 - Классификация возобновляемых источников энергии

Солнце представляет собой газовый шар радиусом 695300 км, в 109 раз больше радиуса Земли, с температурой излучающей поверхности около 6000°С. Внутри Солнца температура достигает 40 млн °С.

На рисунке 1.3 приведена схема строения Солнца. Солнце - гигантский "термоядерный реактор", работающий на водороде и ежесекундно путем плавления перерабатывающий 564 млн. тонн водорода в 560 млн. тонн гелия. Потеря четырех миллионов тонн массы равна 9:1-10 9 ГВтч энергии (1 ГВт равен 1 млн. кВт). За одну секунду энергии производится больше, чем шесть миллиардов АЭС смогли бы произвести за год. Благодаря защитной оболочке атмосферы только часть этой энергии достигает поверхности Земли.

Расстояние между центрами Земли и Солнца равно в среднем 1,496*10 8 км.

Ежегодно Солнце посылает к Земле около 1,610 18 кВтч лучистой энергии или 1,3*10 24 кал тепла. Это в 20 тыс. раз больше современного мирового энергопотребления. Вклад Солнца в энергетический баланс земного шара в 5000 раз превышает суммарный вклад всех других источников.

Такого количества тепла хватило бы, чтобы растопить слой льда толщиной 35 м, покрывающий земную поверхность при 0°С.

В сравнении с солнечной радиацией все остальные источники энергии, поступающей на Землю, ничтожно малы. Так, энергия звезд составляет одну стомиллионную часть солнечной энергии; космическое излучение - две миллиардные доли. Внутреннее тепло, поступающее из глубины Земли на ее поверхность составляет одну десятитысячную часть солнечной энергии.

Рисунок 1.3 – Схема строения Солнца

Таким образом. Солнце является фактически единственным источником тепловой энергии на Земле.

В центре Солнца находится солнечное ядро (см. рис. 1.4). Фотосфера - это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только в периоды полного солнечного затмения.

Видимая поверхность Солнца, излучающая радиацию называется фотосферой (сфера света). Она состоит из раскаленных паров различных химических элементов, находящихся в ионизированном состоянии.

Над фотосферой находится светящаяся практически прозрачная атмосфера Солнца, состоящая из разряженных газов, которая называется хромосферой.

Над хромосферой располагается внешняя оболочка Солнца, называемая короной.

Газы, образующие Солнце, находятся в состоянии непрерывного бурного (интенсивного) движения, что обусловливает появление так называемых солнечных пятен, факелов и протуберанцев.

Солнечные пятна представляют собой большие воронки, образовавшиеся в результате вихревых движений масс газа, скорость которых достигает 1-2 км/с. Температура пятен на 1500°С ниже температуры Солнца и составляет около 4500°С. Количество солнечных пятен изменяется из года в год с периодом около 11 лет.

Рисунок 1.4 - Строение Солнца

Солнечные факелы это выбросы солнечной энергии, а протуберанцы - колоссальной силы взрывы в хромосфере Солнца, достигающие высоты до 2 млн. км.

Наблюдения показали, что с увеличением количества солнечных пятен увеличивается количество факелов и протуберанцев и соответственно увеличивается солнечная активность.

С увеличением солнечной активности на Земле происходят магнитные бури, которые оказывают отрицательное воздействие на телефонную, телеграфную и радиосвязь, а также на условия жизнедеятельности. С этим же явлением связано увеличение полярных сияний.

Следует отметить, что в период увеличения солнечных пятен, интенсивность солнечной радиации сначала увеличивается, что связано с общим увеличением солнечной активности в начальный период, а затем солнечное излучение уменьшается, так как увеличивается площадь солнечных пятен, имеющих температуру на 1500° ниже температуры фотосферы.

Часть метеорологии, изучающая влияние солнечной радиациина Земле и в атмосфере, называется актинометрией.

При актинометрических работах необходимо знать положение Солнца на небесном своде. Это положение определяется высотой или азимутом Солнца.

Высотой Солнца he называется угловое расстояние от Солнца до горизонта, то есть угол между направлением на Солнце и плоскостью горизонта.

Угловое расстояние Солнца от зенита, то есть от его вертикального направления называется азимутом или зенитным расстоянием.

Между высотой и зенитным расстоянием существует соотношение

(1.1)

Азимут Солнца определяется редко, только для специальных paбот.

Высота Солнца над горизонтом определяется по формуле:

где - широта места наблюдений;

- склонение Солнца - это дуга круга склонений от экватора до Солнца, которая отсчитывается в зависимости от положения Солнца в обе стороны от экватора от 0 до ±90°;

t - часовой угол Солнца или истинное солнечное время в градусах.

Величина склонения Солнца на каждый день приводится в астрономических справочниках за многолетний период.

По формуле (1.2) можно вычислить для любого времени t высоту Солнца he или по заданной высоте hc определить время, когда Солнце бывает на данной высоте.

Максимальная высота Солнца в полдень для различных дней года вычисляется по формуле:

(1.3)

ЛЕКЦИЯ 2.

СОЛНЕЧНАЯ РАДИАЦИЯ.

План:

1.Значение солнечной радиации для жизни на Земле.

2. Виды солнечной радиации.

3. Спектральный состав солнечной радиации.

4. Поглощение и рассеивание радиации.

5.ФАР (фотосинтетически активная радиация).

6. Радиационный баланс.

1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.

Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

Солнечная энергия - непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них - собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры - в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая - после прорастания спор - наиболее активно проходит при повышенной освещенности.

Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня - на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

2. Виды солнечной радиации.

Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.

S количество тепла, получаемого перпендикулярной к лучу поверхностью,

ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.

СУММАРНАЯ РАДИАЦИЯ Q - состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .

Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

Свет и тепло, получаемые растениями от Солнца, - результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

Отраженная солнечная радиация. Альбедо . Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10...30 %), ис­ключение составляют снег и вода.

Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года - летом.

Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90...99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

Еэф= Е3-Еа

В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70...140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

3. Спектральный состав радиации.

Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения - от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) - к длинноволновой.

Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y < 0,40 мкм), ви­димую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра сол­нечной радиации лежит рентгеновское излучение, а за инфра­красной - радиоизлучение Солнца. На верхней границе атмос­феры на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 - на видимую и 47 % - на инфракрасную.

Радиацию, излучаемую Землей и атмосферой, называют даль­ней инфракрасной радиацией.

Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые про­цессы, но ускоряет прохождение этапов формирования репро­дуктивных органов у растений.

Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее теп­ловом эффекте, что существенно влияет на рост и развитие рас­тений.

Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.

Видимая часть солнечного спектра , во-первых, создает осве­щенность. Во-вторых, с областью видимой радиации почти со­впадает (захватывая частично область ультрафиолетовой радиа­ции) так называемая физиологическая радиация (А, = = 0,35...0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.

4. Поглощение и рассеивание радиации в атмосфере.

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.

Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.

К= добавить формулу.

Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.

Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная ради­ация, проходя через атмосферу, частично рассеивается. В чис­том и сухом воздухе интенсивность коэффициента молекуляр­ного рассеяния подчиняется закону Релея:

к= с/ Y 4 ,

где С - коэффициент, зависящий от числа молекул газа в единице объема; X - длина рассеиваемой волны.

Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как перво­начальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.

В воздухе, содержащем примеси (мелкие капельки воды, кри­сталлики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесо­ватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают сол­нечные лучи, а диффузно их отражают. В результате облака, ос­вещенные Солнцем, имеют белый цвет.

5. ФАР (фотосинтетическиактивная радиация)

Фотосинтетически активная радиация. В процессе фотосинте­за используется не весь спектр солнечной радиации, а только его

часть, находящаяся в интервале длин волн 0,38...0,71 мкм, - фо­тосинтетически активная радиация (ФАР).

Известно, что видимая радиация, воспринимаемая глазом че­ловека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.

Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья погло­щают сине-фиолетовые (X = 0,48...0,40 мкм) и оранжево-крас­ные (X = 0,68 мкм) лучи, менее - желто-зеленые (А. = 0,58...0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.

У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38...0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных, X. Г. Тоомингом и:

Qфар = 0,43 S " +0,57 D);

составлены карты распределения месячных и годовых сумм Фар на территории России.

Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

КПИфар= (сумма Q / фар/сумма Q / фар) 100%,

где сумма Q / фар - сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q / фар - сумма ФАР, поступающая на посевы за этот период;

Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые - 0,5...1,5 %; хорошие-1,5...3,0; рекордные - 3,5...5,0; теорети­чески возможные - 6,0...8,0 %.

6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

B = S / + D + Ea - Е3- Rk

Уравнение можно записать и в другом виде: B = Q - RK - Еэф.

Для ночного времени уравнение радиационного баланса име­ет следующий вид:

В = Еа - Е3, или В = -Еэф.

Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью - отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1...2 ч до захода Солнца.

Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое - положительные.

Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

* Деятельная поверхность - поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.