Траектория молнии. Что такое молния

Грозовые разряды (молнии ) - это наиболее распространенный источник мощных электромагнитных полей естественного происхождения. Молния представляет собой разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. молнии Причиной возникновения молний является образование большого объемного электрического заряда.

Обычным источником молний являются грозовые кучево-дождевые облака, несущие в себе скопление положительных и отрицательных электрических зарядов в верхней и нижней частях облака и образующие вокруг этого облака электрические поля возрастающей напряженности. Образование таких объемных зарядов различной полярности в облаке (поляризация облака) связано с конденсацией вследствие охлаждения водяных паров восходящих потоков теплого воздуха на положительных и отрицательных ионах (центрах конденсации) и разделением заряженных капелек влаги в облаке под действием интенсивных восходящих тепловых воздушных потоков. Из-за того, что в облаке образуется несколько изолированных друг от друга скоплений зарядов (в нижней части облака скапливаются преимущественно заряды отрицательной полярности).

Грозовые разряды по внешним признакам могут быть разделены на несколько типов. Обычный тип - линейная молния , с разновидностями: ленточная, ракетообразная, зигзагообразная и разветвленная. Наиболее редкий тип разрядов - шаровая молния. Известны разряды, носящие названия "Огни святого Эльма" и "Свечение Анд". Молния обычно бывает многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути, причем каждый разряд, так же как и разряд, получаемый в лабораторных условиях, начинается лидерным и завершается обратным (главным) разрядом. Скорость опускания лидера первого единичного разряда примерно равна 1500 км/с, скорости лидеров последующих разрядов достигают 2000 км/с, а скорость обратного разряда изменяется в пределах 15000 -150000 км/с, т. е. от 0,05 до 0,5 скорости света. Канал лидера, как и канал всякого стримера, заполнен плазмой, следовательно, обладает определенной проводимостью.

Верхним концом лидерный канал соединен с одним из заряженных центров в облаке, поэтому часть зарядов этого центра стекает в канал лидера. Распределение заряда в канале должно быть неравномерным, возрастая к его концу. Однако некоторые косвенные измерения позволяют предположить, что абсолютная величина заряда на головке лидера невелика и в первом приближении канал можно считать равномерно заряженным с линейной плотностью зарядов S. Общий заряд в канале лидера в этом случае равен Q = S*l, где l - длина канала, причем обычно значение его составляет около 10% значения заряда, стекающего в землю во время единичного разряда молнии. В 70-80% всех случаев этот заряд имеет отрицательную полярность. По мере продвижения канала лидера под действием создаваемого им электрического поля в земле происходит смещение зарядов, причем заряды, противоположные по знаку зарядам лидера (обычно это положительные заряды), стремятся расположиться как можно ближе к головке лидерного канала. В случае однородного грунта эти заряды скапливаются непосредственно под лидерным каналом.

Если грунт неоднородный и основная его часть обладает большим удельным сопротивлением, заряды сосредоточиваются в участках с повышенной проводимостью (реки, грунтовые воды). При наличии заземленных возвышающихся объектов (молниеотводы, дымовые трубы, высокие здания, смоченные дождем деревья) заряды стягиваются к вершине объекта, создавая там значительную напряженность поля. На первых стадиях развития лидерного канала напряженность электрического поля на его головке определяется собственными зарядами лидера и находящимися под облаком скоплениями объемных зарядов. Траектория движения лидера не связана с земными объектами. По мере опускания лидера все большее влияние начинают оказывать скопления зарядов на земле и возвышающихся объектах. Начиная с определенной высоты головки лидера (высота ориентировки), напряженность поля по одному из направлений оказывается наибольшей, и происходит ориентирование лидера на один из наземных объектов. Естественно, что при этом преимущественно поражаются возвышающиеся объекты и участки земли с повышенной проводимостью (избирательная поражаемость). С очень высоких объектов навстречу лидеру развиваются встречные лидеры, наличие которых способствует ориентированию молнии на данный объект.

После того, как канал лидера достигнет земли или встречного лидера, начинается обратный разряд, во время которого канал лидера приобретает потенциал, практически равный потенциалу земли. На головке развивающегося вверх обратного разряда имеется область повышенной напряженности электрического поля, под действием которой происходит перестройка канала, сопровождающаяся увеличением плотности зарядов плазмы от 10^13 - 10^14 до 10^16 - 10^19 1/м3, благодаря чему проводимость канала увеличивается по крайней мере в 100 раз. Во время развития обратного разряда через место удара проходит ток iM = v, где v - скорость обратного разряда. Процесс, происходящий при переходе лидерного разряда в обратный разряд, во многом аналогичен процессу замыкания на землю вертикального заряженного провода.

Если заряженный провод замыкается на землю через сопротивление r, то ток в месте заземления равен: где z = волновое сопротивление провода. Таким образом, и при разряде молнии ток в месте удара будет равен v только при сопротивлении заземления, равном нулю. При сопротивлениях заземления, отличных от нуля, ток в месте удара уменьшается. Количественно определить это уменьшение довольно трудно, так как волновое сопротивление канала молнии можно оценить лишь грубо приближенно. Имеются основания предполагать, что волновое сопротивление канала молнии уменьшается при увеличении тока, причем среднее значение примерно равно 200 - 300 Ом. В таком случае при изменении сопротивления заземления объекта от 0 до 30 Ом ток в объекте изменяется всего на 10%. Такие объекты в дальнейшем мы будем называть хорошо заземленными и считать, что через них проходит полный ток молнии iM = v. Основные параметры молнии и интенсивность грозовой деятельности Молнии с большими токами возникают крайне редко. Так, молнии с токами 200 кА возникают в 0,7...1,0% случаев от общего числа наблюдавшихся разрядов.

Число случаев ударов молний с величиной тока 20 кА составляет порядка 50%. Поэтому принято значения амплитуд токов молний представлять в виде кривых вероятностей (функций распределения), для которых по оси ординат откладывается вероятность появления токов молнии с максимальным значением. Основной количественной характеристикой молнии является ток, протекающий через пораженный объект, который характеризуется максимальным значением iM, средней крутизной фронта и длительностью импульса tи, которая равна времени уменьшения тока до половины максимального значения. В настоящее время наибольшее количество данных имеется по максимальным значениям тока молнии, измерение которой осуществляется простейшими измерительными приборами - магниторегистраторами, которые представляют собой цилиндрические стерженьки, изготовленные из стальных опилок или проволочек, запрессованных в пластмассу. Магниторегистраторы укрепляются вблизи возвышающихся объектов (молниеотводы, опоры линий передач) и располагаются вдоль силовых линий магнитного поля, которое возникает при прохождении тока молнии через объект. Так как для изготовления регистраторов применяются материалы, обладающие большой коэрцитивной силой, они сохраняют большую остаточную намагниченность.

Измеряя эту намагниченность, можно с помощью градуировочных кривых определить максимальное значение на магничивающего тока. Измерения магниторегистраторами не обеспечивают большой точности, однако этот недостаток частично компенсируется огромным количеством измерений, которые к настоящему времени исчисляются десятками тысяч. Располагая вблизи от поражаемого объекта рамку, замкнутую на индуктивную катушку, можно измерить крутизну тока молнии с помощью магниторегистратора, помещенного внутри катушки. Измерения показали, что токи молнии изменяются в широких пределах от нескольких килоампер до сотен килоампер, поэтому результаты измерения представляются в виде кривых вероятностей (функций распределения) токов молнии, на которых по оси абсцисс откладывается вероятность появления токов молнии с максимальным значением, превышающим значение, указываемое ординатой.

В Украине при расчетах грозозащиты используется кривая Для горных местностей ординаты кривой уменьшаются в 2 раза, так как при малых расстояниях от земли до облаков молния возникает при меньшей плотности зарядов в скоплениях, т. е. вероятность больших токов уменьшается. Значительно большие трудности представляет экспериментальное определение крутизны и длительности импульса тока молнии, поэтому количество экспериментальных данных по этим параметрам относительно невелико. Длительность импульса тока молнии в основном определяется временем распространения обратного разряда от земли до облака и в связи с этим изменяется в относительно узких пределах от 20 до 80-100 мкс. Средняя длительность импульса тока молнии близка к 50 мкс, что и определило выбор стандартного импульса.

Наиболее важными с точки зрения оценок грозовой стойкости РЭС являются: величина переносимого молнией заряда, ток в канале молнии, число повторных ударов по одному каналу и интенсивность грозовой деятельности. Все эти параметры определяются не однозначно и носят вероятностный характер. Заряд, переносимый молнией, колеблется в процессе разряда в пределах от долей кулона до нескольких десятков кулон. Средний заряд, опускаемый в землю многократной молнией, равен 15 - 25 Кл. Учитывая, что в среднем разряд молнии содержит три компоненты, следовательно, во время одной компоненты в землю переносится около 5 - 8 Кл. Из них в канал лидера стекает около 60% всего данного скопления зарядов, что составляет 3 - 5 Кл. Удар молнии в равнинные участки поверхности земли несет заряд 10 - 50 Кл (в среднем 25 Кл), при ударах молнии в горах - заряд 30 - 100 Кл (в среднем 60 Кл), при разрядах в телевизионные башни заряд достигает 160 Кл.

При разрядах молнии в землю в подавляющем большинстве (85 - 90%) в землю переносится отрицательный заряд. Заряд, стекающий в землю во время многократной молнии, изменяется в пределах от долей кулона до 100 Кл и более. Среднее значение этого заряда близко к 20 Кл. Заряд, спускаемый в землю во время гроз, по-видимому, играет существенную роль в поддержании отрицательного заряда земли. Интенсивность грозовой деятельности в различных климатических районах различается очень сильно. Как правило, количество гроз в течение года минимально в северных районах и постепенно увеличивается к югу, где повышенная влажность воздуха и высокая температура способствуют образованию грозовых облаков. Однако эта тенденция соблюдается не всегда. Существуют очаги грозовой деятельности и в средних широтах (например, в районе Киева), где создаются благоприятные условия для формирования местных гроз.

Интенсивность грозовой деятельности принято характеризовать числом грозовых дней в году или общей годовой продолжительностью гроз в часах. Последняя характеристика более правильна, так как число ударов молнии в землю зависит не от числа гроз, а от их общей продолжительности. Число грозовых дней или часов в году определяется на основании многолетних наблюдений метеорологических станций, обобщение которых позволяет составить карты грозовой деятельности, на которые наносятся линии равной продолжительности гроз - изокеранические линии. Средняя продолжительность гроз за один грозовой день для территории европейской части России и Украины 1,5-2 ч.

Молния - это искровой разряд статического электричестве, аккумулированного в грозовых облаках. В отличие от разрядов, образующихся на производстве и в быту, электрические заряды, накапливаемые в облаках, несоизмеримо больше. Поэтому энергия искрового разряда - молния и возникающих при этом токов очень велика и представляет большую опасность для человека, животных, строений. Молния сопровождается звуковым импульсом - громом. Сочетание молнии и грома называют грозой.

Гроза - это исключительно красивое природное явление. Как правило, после грозы улучшается погода, воздух становится прозрачен, свеж и чист, насыщен ионами, образующимися при разрядах молнии. Несмотря на это нужно помнить, что гроза в определенных условиях может представлять большую опасность для человека. Каждый человек должен знать природу грозового явления, правила поведения во время грозы и методы защиты от молнии. Гроза - сложный атмосферный процесс и ее возникновение обусловлено образованием кучево-дождевых облаков. Сильная облачность является следствием значительной неустойчивости атмосферы. Для грозы характерны сильный ветер, часто интенсивный дождь «снег», иногда с градом. Перед грозой «за час, два» атмосферное давление начинает быстро падать, вплоть до внезапного усиления ветра, а затем начинает повышаться.

Грозы можно разделить на местные, фронтальные, ночные, в горах. Наиболее часто человек сталкивается с местными, или тепловыми грозами. Водяной пар в восходящем потоке теплого воздуха на высоте конденсируется, при этом выделяется много тепла, и восходящие потоки воздуха нагреваются, По сравнению с окружающим восходящий воздух теплее, он увеличивается н объеме, пока не превратится в грозовое облако. В больших по размеру грозовых облаках присутствуют кристаллики льда и капельки воды. В результате их дробления и трения между собой и о воздух образуются положительные и отрицательные заряды, под действием которых возникает сильное электростатическое поле «напряженность электростатического поля может достигать 100 ООО В/м». И разница потенциалов между отдельными частями облака, облаками или облаком и землей достигает громадных величин. При достижении критической электрической напряженности в воздухе возникает лавинообразная ионизация воздуха - искровой разряд молнии.

Фронтальная гроза возникает, когда массы холодного воздуха проникают в район, где преобладает теплая погода. Холодный воздух вытесняет теплый, при этом последний поднимается на высоту 5--7 км. Теплые слои воздуха вторгаются внутрь вихрей различной направленности, образуется шквал, сильное трение между слоями воздуха, что способствует накоплению электрических зарядов. Длина фронтальной грозы может достигать 100 км. В отличие от местных гроз после фронтальных обычно холодает. Ночная гроза связана с охлаждением земли ночью и образованием вихревых токов нисходящего воздуха.

Гроза в горах объясняется разницей в солнечной радиации, которой подвергаются южные и северные склоны гор. Ночные и горные грозы носильные и кратковременные. Грозовая активность в различных районах нашей планеты различна. Мировые очаги гроз: остров Ява - 220 грозовых иней в году; Экваториальная Африка - 150; Южная Мексика - 142; Панама 132; Центральная Бразилия - 106. Россия: Мурманск - 5; Архангельск - 10; Санкт-Петербург - 15; Москва - 20. Как правило, чем южнее «для северного полушария Земли» и севернее «для южного полушария Земли», тем выше грозовая активность. Грозы в Арктике и Антарктике очень редки. Пи Земле в год происходит 16 миллионов гроз. На каждый м2 поверхности земли приходится 2-3 удара молнии в год. В землю чаще всего ударяют молнии из отрицательно заряженных облаков.

По виду молнии различаются на: линейные, жемчужные и шаровые. Жемчужные и шаровые молнии довольно редкое явление. Их характеристики: распространенная линейная молния, с которой многократно встречается любой человек, имеет вид разветвляющейся линии. Величина силы тока в канале линейной молнии составляет в среднем 60 - 170 кА, зарегистрирована молния с током 290 кА. Средняя молния имеет энергию Л0 кВт/час «900 МДж». Разряд развивается за несколько тысячных долей секунды; при столь высоких токах воздух в зоне канала молнии практически мгновенно разогревается до температуры 30000 - 33000°С. В результате резко попытается давление, воздух расширяется и возникает ударная волна, сопровождающаяся звуковым импульсом - громом. *Жемчужная молния - очень редкое и красивое явление. Появляется сразу после линейной молнии и исчезает постепенно. Чаще всего разряд жемчужной молнии следует по пути чиненной. Молния имеет вид 12 м друг от друга и напоминающих жемчуг, нанизанный на нитку. Жемчужная молния может сопровождаться исключительными звуковыми эффектами.

Шаровая молния также довольно редка. На тысячи обычных линейных молний приходится 2 -3 шаровых. Шаровая молния, как правило, появляется чаще к концу грозы, реже - после грозы. Может иметь форму шара, эллипсоида, груши, диска и даже цепи шаров. Цвет Молнии - красный, желтый, оранжево-красный. Иногда молния ослепительно белая с очень резкими очертаниями. Цвет определяется содержанием различных веществ в воздухе. Форма и цвет молнии могут меняться во время разряда. Измерить параметры шаровой молнии и смоделировать ее в лабораторных условиях не удалось. По всей видимости, многие наблюдаемые неопознанные летающие объекты «НЛО» по своей природе аналогичны или близки шаровой молнии.

Опасные факторы воздействия молнии: Линейная молния. В связи с тем, что молния характеризуется большими величинами токов, напряжений и температр разряда, воздействие ее на человека, как правило, приводит к их смерти. От удара молнии в мире в среднем ежегодно погибает около 3000 человек причем известны случаи одновременного поражения нескольких человек. Разряд молнии проходит по пути наименьшего электрического сопротивления: если расположить рядом две мачты - металлическую и бол со высокую деревянную, то молния, скорее всего, ударит в металлическую мачту, хотя она ниже, потому что электропроводность металла выше; молния также значительно чаще ударяет в глинистые и влажные участки, чем в сухие и песчаные, поскольку первые обладают большей электропроводностью; в лесу молния действует тоже избирательно, попадая, прежде всего, в такие лиственные деревья как дуб, тополь, верба, ясень, так как в них содержится много крахмала. Хвойные деревья -- ель, пихта, лиственница и такие лиственные деревья как липа, грецкий орех, бук содержат много масел, поэтому оказывают большое электрическое сопротивление, и в них молния ударяет реже.

Из 100 деревьев молнией поражается: 27 процентов тополей; 20 процентов груш; 12 процентов лип; 8 процентов елей и только 0,5 процент кедровых. Кроме поражения людей и животных линейная молния довольно часто является причиной возникновения лесных пожаров, а также жилых и производственных зданий, особенно в сельской местности. В связи с этим необходимо принимать специальные защиты от поражения линейной молнией. Шаровая молния. Если природа линейной молнии ясна, а, следовательно, и ее поведение предсказуемо, то природа шаровой молнии до сих пор не понятна. Опасность поражения человека шаровой молнией, прежде всего, связанна именно с отсутствием методов и правил защиты человека от нее.

В 1753 году русский физик Георг Вильгельм Рихман, коллега М.В. Ломоносова, был убит шаровой молнией во время грозы при исследовании искровых разрядов в атмосфере. Известны многие случаи гибели людей при встрече с шаровой молнией. Драматический случай произошел с группой из пяти советских альпинистов 17 августа 1978 года на Кавказе на высоте около 4000м, где они остановились в ясную, холодную ночь на ночлег. В палатку к альпинистам залетел светло-желтый шар величиной с теннисный мяч. Шар парил над спальными мешками, в которых находились альпинисты, и методично, по какому-то собственному плану, проник в спальные мешки. Каждый такой «визит» вызывал отчаянный нечеловеческий крик, люди чувствовали сильнейшую боль, как будто их жгли автогеном, и теряли сознание. Они не могли двигать ни руками, ни ногами. После того как шар «посетил» спальные мешки каждого альпиниста по несколько раз, он исчез. Все альпинисты получили множество тяжелых ран. Это были не ожоги, а именно рваные раны: мышцы были вырваны целыми кусками, до самых костей. Одного из альпинистов - Олега Коровина - шар убил. При этом шаровая молния не коснулась ни одного предмета в палатке, а только покалечила людей.

Поведение шаровой молнии непредсказуемо. Она неожиданно появляется где угодно, в том числе в закрытых помещениях. Замечены случаи появления шаровой молнии из телефонной трубки, электрической бритвы, выключателя, розетки, репродуктора. Она достаточно часто проникает в здания через трубы, открытые окна и двери. Размеры шаровой молнии бывают от нескольких сантиметров до нескольких метров. Обычно она легко парит или катится над землей, иногда подскакивает. Она реагирует на ветер, сквозняк, восходящие и щи ходящие потоки воздуха. Однако отмечен случай, когда шаровая молния не реагировала на поток воздуха.

Шаровая молния может появиться, не нанеся вреда человеку или помещению, залететь в окно и исчезнуть из помещения через открытую дверь или дымовую трубу, пролетев мимо человека. Всякий контакт с ней приводит к тяжелым травмам, ожогам, а в большинстве случаев к смертельному исходу. Широкая молния может взорваться. Возникающая при этом воздушная волна способна травмировать человека или привести к разрушениям в здании. Известны случаи взрывов молний в печках, дымоходах, что приводило к разрушению последних. Собранные свидетельства о поведении шаровой миопии говорят, что в большинстве случаев взрывы не были опасны, тяжелые последствия возникали в 10 случаях из 100. Считается, что шаровая молния имеет температуру около 5000°С и может вызвать пожар.

`Правила поведения во время грозы:

Вспышку молнии мы видим практически мгновенно, та как свет распространяется со скоростью 300 000 км/с. Скорость распространения звука в воздухе равна примерно 344 м/с, то есть примерно за 3 секунды звук проходит 1 км. Молния опасна тогда, когда за вспышкой тут же следует раскат грома, значит, грозовое облако находится над Вами, и опасность удара молнии наиболее вероятна. Ваши действия перед грозой и во время нее должны быть зимующими: выходить из дома, закрыть окна, двери и дымоходы, позаботиться, чтобы не было сквозняка, который может привлечь шаровую молнию. Во время грозы не топить печку, так как дым, выходящий из трубы имеет высокую электропроводность, и вероятность удара молнии в возвышающуюся над крышей трубу возрастает; во время грозы подальше держаться от электропроводки, антенн, окон, дверей и всего остального, связанного с внешней средой. Не располагаться у стены, рядом с которой растет высокое дерево; радио и телевизоры отключать от сети, не пользоваться электроприборами и телефоном «особенно это важно для сельской местности»; «и время прогулки спрятаться в ближайшее здание. Особенно опасна гроза в поле. При поиске укрытия отдайте предпочтение металлической конструкции больших размеров или конструкции с металлической рамой, жилому дому или фугой постройке, защищенной молниеотводом; если нет возможности укрыться в здании, не надо прятаться в небольших сараях, под одинокими деревьями; не оставаться на возвышенностях и открытых незащищенных местах, вблизи металлических или сетчатых оград, крупных металлических объектов, влажных стен, заземления молниеотвода; при отсутствии укрытия лечь на землю, при этом предпочтение следует отдать сухому песчаному грунту, удаленному от водоема; если гроза застала Вас в лесу, необходимо рыться на участке с низкорослыми деревьями. Нельзя укрываться под высокими деревьями, особенно соснами, дубами, тополями. Лучше находиться ни расстоянии 30 м от отдельно высокого дерева. Обратите внимание - нет ли рядом деревьев, ранее пораженных грозой, расщепленных. Лучше держаться подальше от этого места. Обилие пораженных молнией деревьев свидетельствует, что грунт на данном участке имеет высокую электропроводность, и удар молнии в тин участок местности весьма вероятен во время грозы нельзя находиться на воде и у воды - купаться, ловить рыбу. Необходимо подальше отойти oт берет, и горах отойдите от горных гребней острых возвышающихся скип и вершин. При приближении в горах грозы нужно спуститься как можно ниже. Металлические предметы - альпинистски» крючья, ледорубы, кастрюли собрать в рюкзак и спустить на веревке на 20-30 м ниже по склону; во время грозы не занимайтесь спортом на открытом воздухе, не бегите, так как считается, что пот и быстрое движение «притягивает» молнию; если вы застигнуты грозой на велосипеде или мотоцикле, прекратите движение, оставьте их и переждите грозу на расстоянии примерно 30 м от них; если гроза застала вас в автомобиле, не нужно его покидать. Необходимо закрыть окна и опустить автомобильную антенну. Двигаться во время грозы на автомобиле не рекомендуется, поскольку гроза, как правило, сопровождается ливнем, ухудшающем видимость на дороге, а вспышка молнии может ослепить и вызвать испуг и, как следствие, аварии; при встрече с шаровой молнией не проявляйте по отношению к ней никакой активности, по возможности сохраняйте спокойствие и не двигайтесь. Не нужно приближаться к ней, касаться ее чем-либо, т.к. может произойти взрыв. Не следует убегать от шаровой молнии, потому что это может повлечь ее ш собой возникшим потоком воздуха.

Молниезащита:

Эффективным средством защиты от молнии является молниеотводы, Приоритет изобретения молниеотвода принадлежит американцу Бенджамину Франклину «1749 год». Несколько позднее в 1758 год, независимо от него, молниеотвод изобрел М.В. Ломоносов. Молниезащита путем установки молниеотводов основана на свойстве молнии, поражать наиболее высокие и хорошо заземленные металлические сооружения. Молниеотвод состоит из трех основных частей: молниеприемника, воспринимающего удар молнии; токовода, соединяющего молниеприемник с заземлителем, через который ток молнии стекает в землю. По типу монниеприемников наиболее распространены стержневые и тросовые. Молниеотводы разделяются на: одиночные, двойные и многократные.

Окрест молниеотвода образуется зона защиты, то есть пространство, и пределах которого обеспечивается защита строения или какого-либо другого объекта от прямого удара молнии. Степени защиты в указанных зонах составляют более 95 процентов. Это означает, что из 100 ударов молнии н защищенный объект возможно менее 5 случаев попадания, остальные удары будут восприняты молниеприемником. Зона защиты ограничивается образующими двух конусов, один из которых имеет высоту h, равную высоте молниеотвода, и радиус основания R = 0,75 h, а другой - высоту 0.8 h и радиус основания 1,5 h «при радиусе основания второго конуса R = h эффективность защиты обеспечивается на 99 процентов».

Молниеприемники стержневых молниеотводов изготавливают из стали любого профиля, как правило, круглого, сечением не менее 100мм2 и длиной не менее 200мм. Для защиты от коррозии ох окрашивают. Молниеприемники тросовых молниеотводов изготавливают из металлических тросов диаметром около 7мм. Тоководы должны выдерживать нагрев при протекании очень больших токов разряда молнии в течение короткого промежутка времени, поэтому их делают из металлов с небольшим сопротивлением. Сечение тоководов на воздухе не должно быть менее 48 мм2, а в земле - 160мм 2. заземлители являются важнейшим элементом молниезащиты. Их назначение обеспечивать достаточно малое сопротивление растеканию тока молнии в грунте. В качестве заземлителя можно использовать зарытые в землю на глубину 2 - 2,5м металлические трубы, плиты, мотки проволоки и сетки, куски (хищнической арматуры. Молниеотводы желательно устанавливать на возвышенностях, чтобы сократить путь молнии и увеличить размеры зоны защиты. Дымовые трубы, фронтоны, выступы на крыше, телевизионные антенны нужно заземлить с помощью тоководов. Металлические водосточные трубы и лестницы, ведущие на крышу, желательно соединить с тоководом или заземлить отдельно.

Помните мы тут рассматривали ! А теперь поговорим об обычных молниях. Вот скажите мне, как их снимают фотографы? Понятно, что успеть щелкнуть во время разряда нельзя. Да и даже серию снимков начинать делать заранее тоже не много шансов. Не уж то врубают почти как видеозапись, а потом тупо вырезают кадр молнии?

Давайте посмотрим на красивые молнии. Почти все картинки кликабельны до 1920рх - выбирайте себе на стол!

Молния — электрический искровой разряд, проявляющийся, обычно, яркой вспышкой света и сопровождающим её громом. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Молнии также были найдены на Венере, Юпитере, Сатурне и Уране.


Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

В июле 2005 года агентство РИА «Новости» передало следующее сообщение:
«В Японии девять человек пострадали от удара молнии, сообщило Главное полицейское управление страны, это произошло на пляже в префектуре Эба, в 50 километрах к северу от Токио.
По свидетельству очевидцев, при ясной погоде прозвучал раскат грома, в воду ударила молния, поразившая нескольких купающихся. Все они доставлены в больницу. Двое до сих пор находятся в бессознательном состоянии, а семеро получили ожоги разной степени тяжести...

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т.д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА.

Для объяснения электризации грозовых облаков был разработан ряд теорий. В 1929 Дж.Симпсон предложил теорию, которая объясняет электризацию дроблением дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие - отрицательно. В основе индукционной теории, предложенной в 1885, лежит предположение о том, что электрические заряды разделяются электрическим полем Земли, имеющей отрицательный заряд. В теории свободной ионизации Ч.Вильсона предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

На открытой местности разряды положительной и отрицательной полярности наблюдаются одинаково часто, но около 95% ударов в линии электропередачи и антенны исходят из отрицательно заряженных облаков. Разряд молнии характеризуется чрезвычайно быстрым нарастанием тока до пикового значения, как правило, достигаемого за время от 1 до 80 мкс (миллионных долей секунды), и последующим падением тока обычно за 3-200 мкс после пикового значения.

Многократные молнии - обычное явление, они могут насчитывать до 40 разрядов с интервалами от 500 мкс до 0,5 с, а полная продолжительность многократного разряда может достигать 1 с. С помощью фоторегистратора с временной разверткой было детально изучено развитие разряда молнии от облака до земли. Разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле. Скорость ступенчатого движения лидера к земле равна приблизительно 45·10 6 м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера - около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизованному каналу от земли к облаку движется основной разряд со скоростью от 2·10 7 м/с до 15·10 7 м/с. Он обычно глубоко проникает внутрь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией ионизованных атомов, может продолжаться более секунды.

Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда - от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Американский физик Алистер Лесли внес существенные коррективы в выводы японских специалистов: «Климатические условии не всегда определяют поведение этого грандиозного явления. В данном случае длина небесной искры равнялась 140 километрам. Сила тока достигала 600 килоампер. Температура 30 000 градусов по Кельвину. Интенсивность излучения перекрыла естественный солнечный свет при ничтожно малом канале разрядного шнура 2,5-3 сантиметра.
Купающиеся, таким образом, оказались погруженными в электролит гигантского конденсатора,

пластины которого - крайне разряженные облака и обширная береговая линия. Генезис этого явления, приведшего к трагедии, тщательно изучается. Вместе с тем преждевременно рапортовать о том, что у нас есть стройная, объясняющая все теория.»

Ученый прав. Современная наука, к сожалению, смоглаа преуспеть разве что в измерениях электрических составляющих грозовых фронтов, подсчетах ущерба планетарного масштаба, ежегодно наносимого ими.

Очень мало известно о физике молнии. Господствуют выводы, сделанные еще Михаилом Ломоносовым: злектрическая искра проскакивает либо между разнозаряженными знаками облаков, либо их отрицательной зоной и землей. 3

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами.

ак, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с мириадов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км 3 .
Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Процесс развития наземной молнии состоит из несколько стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.
Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности Земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии може быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают.

В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера.

Когда стреловидный лидер доходит до поверхности Земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек.

Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
При попадании молнии непосредственно в грунт возможно образование своеобразного минерала фульгурита, представляющего собой, в основном, спёкшийся кварцевый песок.

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе.

Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

Лучше всего работу естественной электрической машины наблюдать из космоса. Российский космонавт Владимир Джанибеков говорит:

Вспышки молний, прошивающие пространство над планетой, похожи на работу фотовспышек невероятной силы, отлично видных даже с Луны. Начинаешь понимать, почему люди, оказавшиеся под обстрелом молний, сравнивали свое положение с кошмаром... 3

Ежечасно на нашей планете регистрируются более миллиона грозовых разрядов, жертвами некоторых становятся люди, находящиеся на воде, в небе, на земле.
По мнению американского физика Джерри Айтмана, эти потери от поражений небесным электричеством вполне сопоставимы с потерями в локальных боевых действиях. То есть, годичная статистика смертей и увечий иногда существенно превышает невосполнимый ущерб, наносимый такими природными катастрофами, как смерчи, цунами, сели.
В довершение ко всему, оказывается, молния еще и художник!

Разновидностью молний есть шаровая молния - светящийся сгусток горячего газа, изредка появляющийся в грозовых погодных условиях.

В 1943 г. некий В. Дж. Хэмфрис в своей работе «Причуды погоды» высказывал традиционную точку зрения, что шаровая молния — это не более чем оптическая иллюзия.

Несмотря на то, что это явление пока ещё до конца не понято физикой, не стоит относиться к нему как к чему-то крайне необычному, тем более как к сверхъестественному. Это явление до конца не изучено, но активно изучается.
На сегодняшний день ясно, что шаровая молния — просто красочное атмосферное явление, проявление атмосферного электричества, и для его объяснения не потребуется привлечение каких-либо кардинально новых физических концепций.
Основной камень преткновения в этих исследованиях — отсутствие надёжной методики воспроизводимого получения шаровой молнии в управляемых, лабораторных условиях. Если бы это было достигнуто, задача была бы практически решена.

Поныне в экспериментах удавалось получить нечто, лишь отдалённо схожее с шаровой молнией. И, изучая это «нечто», экспериментаторы пока не могут сказать, изучают ли они саму шаровую молнию или какое-то другое явление. Такое состояние дел в эксперименте и позволяет теоретикам выдвигать совершенно разные (а иногда и самые фантастические) предположения и гипотезы о сущности шаровой молнии.

«К шаровой молнии прикасаться очень опасно. Любопытный малыш как-то ударил шаровую молнию ногой, и происшедший взрыв принес гибель одиннадцати животным, пасущимся неподалеку, а ребенка и его спутника швырнул на землю» 4
Там же Лейн приводит следующий случай с шаровой молнией: «Молодая девушка сидела за столом и вдруг заметила большой огненный шар, который медленно двигался по полу комнаты в ее направлении.
Когда шар приблизился к ней, он поднялся и начал двигаться по спирали вокруг нее.

Затем устремился к печи и поднялся по трубе вверх. Оказавшись вне трубы, он взорвался над крышей с таким грохотом, что потряс до основания весь дом». 4

Цвет: самым распространенным является желтый, оранжевый (до красного), далее белый, голубой, попадаются и зеленые, кто-то видел даже черные и прозрачные (в воздухе видна летающая линза).
Одним словом, с уверенностью сказать, что если вы увидели что-то фиолетового цвета в желтую полоску, и это не была шаровая молния, будет опрометчиво. Кстати, серьезно, в очень многих статьях отмечается, что шаровая молния бывает неоднородного цвета, пятнистой, и может даже менять цвет.

Размер: тут самым распространенным является диаметр от 10 до 20 сантиметров. Реже встречаются экземпляры от 3 до 10 и от 20 до 35. Существование шаровой молнии диаметром около метра так же не большая редкость, а еще бывают и несколько километровые гиганты. Остается только утешаться тем, что шар диаметром близким к километру вряд ли залетит вам в форточку.

Температура: о! ну тут уже дела совсем плохи. Называется температура от комнатной до звездной. Чаще всего встречается упоминание о 100-1000 градусов. Но при этом об ощутимом тепле на расстоянии вытянутой руки нигде не написано.

Как такое может быть, судить уже физикам, а мы лишь с покорностью ищем упоминаний об отрицательной температуре шаровой молнии.

Во время взрыва, если таковым заканчивается ее жизнь, шаровая молния выделяет большое количество тепла, от которого может случиться пожар или иные повреждения. Поэтому после взрыва стоит обратить внимание на возможное возгорание.

Вес: везде написано чуть ли не одинаковым шрифтом: 5-7 грамм. И это не зависит от размеров.

Интенсивность свечения: по самому распространенному мнению, увидев шаровую молнию, вы на несколько секунд совершенно бесплатно получите 100 ватную лампочку. Хотя она может совсем скоро начать портится и совсем угаснуть в конце. О свечении шаровой молнии во время взрыва ничего не известно, скорее всего это сильная вспышка.

Молния

Мы часто думаем, что электричество - это нечто такое, что вырабатывается только на электростанциях, а уж никак не в волокнистых массах водяных облаков, которые настолько разрежены, что в них спокойно можно просунуть руку. Тем не менее, в облаках есть электричество, как есть даже в человеческом теле.

Природа электричества

Все тела состоят из атомов - от облаков и деревьев до человеческого организма. У каждого атома есть ядро, несущее положительно заряженные протоны и нейтральные нейтроны. Исключением является простейший атом водорода, в ядре которого нет нейтрона, а есть только один протон.

Вокруг ядра обращаются отрицательно заряженные электроны. Положительные и отрицательные заряды взаимно притягиваются, поэтому электроны вращаются вокруг ядра атома, как пчелы около сладкого пирога. Притяжение между протонами и электронами обусловлено электромагнитными силами. Поэтому электричество присутствует везде, куда бы мы ни посмотрели. Как мы видим, оно содержится и в атомах.

В нормальных условиях положительные и отрицательные заряды каждого атома уравновешивают друг друга, поэтому тела, состоящие из атомов, обычно не несут никакого суммарного заряда - ни положительного, ни отрицательного. В результате соприкосновение с другими предметами не вызывает электрического разряда. Но иногда равновесие электрических зарядов в телах может нарушиться. Возможно, вы это испытываете на себе, находясь дома в холодный зимний день. В доме очень сухо и жарко. Вы, шаркая босыми ногами, ходите по паласу. Незаметно для вас часть электронов с ваших подошв перешла к атомам ковра.

Материалы по теме:

Разноцветные дожди

Вот теперь вы несете электрический заряд, так как количество протонов и электронов в ваших атомах уже не сбалансировано. Попробуйте теперь взяться за металлическую ручку двери. Между вами и ею проскочит искра, и вы почувствуете электрический удар. Произошло вот что - ваше тело, которому не хватает электронов для достижения электрического равновесия, стремится за счет сил электромагнитного притяжения восстановить равновесие. И оно восстанавливается. Между рукой и дверной ручкой возникает поток электронов, направленный к руке. Если бы в комнате было темно, то вы увидели бы искры. Свет виден потому, что электроны при перескакивании испускают кванты света. Если в комнате тихо, вы услышите легкое потрескивание.

Электричество окружает нас повсюду и содержится во всех телах. Облака в этом смысле - не исключение. На фоне голубого неба они выглядят очень безобидными. Но так же, как вы в комнате, они могут нести электрический заряд. Если это так - берегитесь! Когда облако восстанавливает электрическое равновесие внутри себя - вспыхивает целый фейерверк.

Как появляется молния?

Вот что при этом происходит: в темном огромном грозовом облаке постоянно циркулируют мощные воздушные потоки, которые сталкивают между собой разнообразные частицы - крупинки океанической соли, пыль и так далее. Точно так же, как ваши подошвы при трении о ковер освобождаются от электронов, и частицы в облаке при столкновении освобождаются от электронов, которые перескакивают на другие частицы. Так возникает перераспределение зарядов. На одних частицах, которые потеряли свои электроны, имеется положительный заряд, на других, которые приняли на себя лишние электроны, теперь отрицательный заряд.

Материалы по теме:

Дожди на других планетах

По причинам, которые не вполне ясны, более тяжелые частицы заряжаются отрицательно, а более легкие - положительно. Таким образом, более тяжелая нижняя часть облака заряжается отрицательно. Отрицательно заряженная нижняя часть облака отталкивает в сторону земли электроны, так как одноименные заряды отталкиваются. Таким образом, под облаком формируется положительно заряженная часть земной поверхности. Затем точно по такому же принципу, по которому между вами и дверной ручкой проскакивает искра, между облаком и землей проскочит такая же искра, только очень большая и мощная это и есть молния. Электроны гигантским зигзагом летят к земле, находя там свои протоны. Вместо едва слышного потрескивания раздается сильный удар грома.

Если просмотреть весь процесс в замедленном темпе, то вот что мы увидим. Из основания облака выступает тускло светящаяся полоса, называемая проводником. Проводник, он же «лидер», начинает быстрыми извилистыми движениями приближаться к земле. Сначала он проскакивает на 50 метров вправо, потом на 50 метров влево. Это тот самый зигзаг, который мы видим в небе. Путь лидера к земле продолжается в течение долей секунды, сила тока в молнии достигает 200 ампер. В домашней проводке сила тока не превышает 6 ампер. Когда лидер находится на расстоянии около 20 метров от земли, от нее в направлении к лидеру выскакивает искра и соединяется с ним. Ослепительный зигзаг несется кверху, к облаку, сила тока при этом достигает 10000 ампер.

Многие люди боятся страшного явления природы - грозы. Это обычно происходит, когда солнце закрывается мрачными тучами, гремит жуткий гром и идет сильный дождь.

Конечно, бояться молнии следует, ведь она может даже убить или стать Это известно давно, поэтому и придумали различные средства для защиты от молний и грома (например, металлические шесты).

Что же происходит там наверху и откуда берется гром? И молния как возникает?

Грозовые тучи

Обычно огромные. По высоте они достигают нескольких километров. Визуально не видно, как внутри этих гремучих туч все бурлит и кипит. Это воздуха, включающие в себя капельки воды, с большой скоростью перемещаются снизу вверх и наоборот.

Самая верхняя часть этих туч по температуре достигает -40 градусов, и капли воды, попадающие в эту часть тучи, замерзают.

О происхождении грозовых туч

Прежде чем мы узнаем, откуда берется гром и молния как возникает, вкратце опишем, как формируются грозовые тучи.

Большая часть этих явлений происходит не над водной гладью планеты, а над континентами. Кроме того, грозовые облака интенсивно формируются над континентами тропических широт, где у поверхности земли воздух (в отличие от воздуха над водной поверхностью) сильно прогревается и поднимается быстро вверх.

Обычно на склонах разных возвышенностей образуется подобный прогретого воздуха, который втягивает в себя влажный воздух с обширных площадей земной поверхности и поднимает его вверх.

Таким образом и образуются так называемые кучевые облака, превращающиеся в грозовые облака, описанные чуть выше.

А теперь проясним, что же такое молния, откуда берется она?

Молния и гром

Из тех самых замерзших капель образуются кусочки льда, которые также перемещаются в облаках с огромной скоростью, сталкиваясь, разрушаясь и заряжаясь электричеством. Те льдинки, которые легче и меньше, остаются наверху, а те, что крупнее, - тают, спускаясь вниз, вновь превращаясь в капельки воды.

Таким образом, в грозовой туче возникают два электрических заряда. В верхней части отрицательный, в нижней - положительный. При встрече разных зарядов возникает мощный и происходит молния. Откуда берется она, стало понятно. А дальше что происходит? Вспышка молнии мгновенно разогревает и расширяет вокруг себя воздух. Последний нагревается так сильно, что происходит эффект взрыва. Это и есть гром, пугающий все живое на земле.

Выходит, что все это - проявления Тогда возникает следующий вопрос о том, последнее откуда берётся, причем в таких больших количествах. И куда оно девается?

Ионосфера

Что такое молния, откуда берется она, выяснили. Теперь немного о процессах, сохраняющих заряд Земли.

Ученые выяснили, что заряд Земли в общем невелик и составляет всего лишь 500 000 кулонов (как у 2 автомобильных аккумуляторов). Тогда куда исчезает тот отрицательный заряд, которые переносится молниями ближе к поверхности Земли?

Обычно в ясную погоду Земля потихоньку разряжается (постоянно между ионосферой и поверхностью Земли проходит слабый ток через всю атмосферу). Хоть и воздух считается изолятором, в нем есть небольшая доля ионов, которая позволяет существовать току в объёме всей атмосферы. Благодаря этому, хоть и медленно, но отрицательный заряд переносится с земной поверхности на высоту. Поэтому и объем суммарного заряда Земли всегда сохраняется неизменным.

На сегодня самым распространенным мнением является то, что молния шаровая представляет собой особый вид заряда в форме шара, причем существующий довольно продолжительное время и перемещающийся по непредсказуемой траектории.

Единой теории возникновения этого явления на сегодня нет. Существует много гипотез, но пока ни одна не получила признания в среде ученых.

Обычно, как свидетельствуют очевидцы, возникает в грозу или в шторм. Но имеются и случаи её возникновения и в солнечную погоду. Чаще она порождается обычной молнией, иногда возникает и спускается с облаков, а реже появляется неожиданно в воздухе или даже может выйти из какого-то предмета (столб, дерево).

Некоторые интересные факты

Откуда берется гроза и молния, мы выяснили. Теперь немного о любопытных фактах, касающихся вышеописанных природных явлений.

1. Ежегодно Земля испытывает приблизительно 25 миллионов вспышек молний.

2. Молния имеет среднюю длину приблизительно в 2,5 км. Есть и разряды, простирающиеся в атмосфере на 20 км.

3. Есть поверье, что молния не может дважды ударить в одно место. В действительности это не так. Результаты анализа (по географической карте) мест ударов молний за предшествующие несколько лет показывают, что молния и несколько раз может ударить в одно и то же место.

Вот и выяснили что такое молния, откуда берется она.

Грозы образуются как следствие сложнейших атмосферных явлений планетарного масштаба.

Каждую секунду на планете Земля происходит примерно 50 вспышек молниий.