Жизненный цикл звезд. Как умирают звёзды

Эволюция звезд - изменение физ. характеристик, внутр. строения и хим. состава звезд со временем. Важнейшие задачи теории Э.з. - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний.

Поскольку в известной нам части Вселенной ок. 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение Э.з. явл. одной из наиболее важных проблем астрофизики.

Звезда в стаыционарном состоянии - это газовый шар, к-рый находится в гидростатич. и тепловом равновесии (т.е. действие сил тяготения уравновешино внутр. давлением, а потери энергии на излучение компенсируются энергией, выделяющейся в недрах звезды, см. ). "Рождение" звезды - это образование гидростатически равновесного объекта, излучение к-рого поддерживаются за счет собст. источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофич. сжатию.

Выделение гравитац. энергии может играть определяющую роль лишь тогда, когда темп-ра недр звезды недостаточна для того, чтобы ядерное энерговыделение могло компенсировать потери энергии, и звезда в целом или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Т.о., Э.з. можно представить как последовательную смену источников энергии звезд.

Характерное время Э.з. слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно. Поэтому осн. методом исследования Э.з. явл. построение последовательностей моделей звезд, описывающих изменения внутр. строения и хим. состава звезд со временем. Эволюц. последовательности затем сопоставляются с результатами наблюдений, напр., с (Г.-Р.д.), суммирующей наблюдения большого числа звезд, находящихся на разных стадиях эволюции. Особо важную роль играет сравнение с Г.-Р.д. для звездных скоплений, поскольку все звезды скопления имеют одинаковый начальный хим. состав и образовались практически одновременно. По Г.-Р.д. скоплений различного возраста удалось установить направление Э.з. Детально эволюц. последовательности рассчитываются путем численного решения системы дифференциальных уравнений, описывающих распределение массы, плотности, темп-ры и светимости по звезде, к к-рым добавляются , законы энерговыделения и непрозрачности звездного вещества и ур-ния, описывающие изменение хим. состава звезды со временем.

Ход эволюции звезды зависит в основном от ее массы и исходного хим. состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магн. поле, однако роль этих факторов в Э.з. еще недостаточно исследована. Хим. состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав к-рого определялся космологич. условиями. По=видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), к-рые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, явл. существование массивных ярких звезд спектр. классов O и B, время жизни к-рых не может превосходить ~ 10 7 лет. Скорость звездообразования в совр. эпоху оценивается в 5 в год.

2. Образование звезд, стадия гравитационного сжатия

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитац. конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой темп-рой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магн. поле. Газово-пылевые комплексы с массой , характерным размером (10-100) пк и концентрацией частиц n ~10 2 см -3 . действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитац. частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магн. энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядкаединицы критерий Джинса записывается в виде: align="absmiddle" width="205" height="20">, где - масса облака, T - темп-ра газа в К, n - число частиц в 1 см 3 . При типичных для совр. межзвездных облаков темп-рах К могут сколлапсировать лишь облака с массой, не меньшей . Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (10 3 -10 6) см -3 , т.е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что происходит путем последовательной, осуществляющейся в неск. этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы наз. протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магн. поля включает неск. этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, гл. обр. за счет теплового излучения пыли, к-рой передают свою кинетич. энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем , где G - , - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т.к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в к-рой вещество распределяется по закону . Когда концентрация частиц в ядре достигает ~ 10 11 см -3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Темп-ра начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатич. равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает . Параметры ядра в это время слабо зависят от общей массы протозвезды: К. По мере увеличения массы ядра за счет аккреции, его темп-ра изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H 2 . В результате расхода энергии на диссоциацию, а не не увеличение кинетич. энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует (см. ). Образуется новое ядро с параметрами , окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием или , если ядро достаточно массивно (см. ). У протозвезд с характерное время вещества оболочки t a >t кн , поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значит. часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т.е. 10 5 -10 6 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р.д., занимаемой звездами типа Т Тельца (карликовыми ), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные ранних спектр. классов с эмиссионными линиями в спектрах).

Эволюц. треки ядер протозвезд с постоянной массой на стадии гидростатич. сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатич. равновесие, условия в ядрах таковы, что энергия в них переносится . Расчеты показывают, что темп-ра поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т.к. она продолжает сжиматься. При неизменной темп-ре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р.д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия темп-ра в недрах звезды повышается, вещество становится более прозрачным, и у звезд с align="absmiddle" width="90" height="17"> возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная темп-ра, тем больше у нее лучистое ядро (в звездах с align="absmiddle" width="74" height="17"> лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при к-ром вся выделяющаяся в ядре энергия переносится излучением.

3. Эволюция на основе ядерных реакций

При темп-ре в ядрах ~ 10 6 К начинаются перве ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда темп-ра в центре звезды достигает ~ 10 6 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение (см. ). Однородные звезды, в ядрах к-рых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше,чем у маломассивных звезд. С момента выхода на НГП Э.з. происходит на основе ядерного горения, главные стадии к-рого суммирована в табл. Ядерное горение может происходить до образования элементов группы железа, у к-рых наибольшая среди всех ядер энергия связи. Эволюц. треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений темп-ры и плотности звезд показана на рис. 3. При К осн. источником энергии явл. реакция водородного цикла, при б"ольших T - реакции углерод-азотного (CNO) цикла (см. ). Побочным эффектом CNO-цикла явл. установление равновесных концентраций нуклидов 14 N, 12 C, 13 C - соответственно 95%, 4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений , у к-рых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре к-рых реализуется CNO-цикл ( align="absmiddle" width="74" height="17">), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от темп-ры: . Поток же лучистой энергии ~ T 4 (см. ), следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где темп-ра достаточно высока. Время выгорания водорода заключено в пределах от ~ 10 10 лет для до лет для . Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - (ГП). У звезд с темп-ра в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатич. равновесия давление в центре дожно возрастать, что влечет за собой увеличение темп-ры в центре и градиента темп-ры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом темп-ры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с ок. 10 млн. лет, с ок. 70 млн. лет, а с ок. 10 млрд. лет.

Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с align="absmiddle" width="66" height="17"> сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до темп-ры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой , у к-рых в меньшей степени зависит от темп-ры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.

Э.з. после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , явл. вырождение газа электронов при больших плотностях. В из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состояит в том, что его давление p зависит лишь от плотности: для нерелятивистского вырождения и для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для Э.з. вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа, , зависит от плотности так же, как и градиент давления , должна существовать предельная масса (см. ), такая, что при align="absmiddle" width="66" height="15"> давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса align="absmiddle" width="139" height="17">. Граница области, в к-рой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.

Второй фактор, определяющий Э.з. на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~10 8 К осн. роль в рождении играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (), аннигиляция пар электрон-позитрон () и (см. ). Важнейшая особенность нейтрино состояит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.

Гелиевое ядро, в к-ром еще не возникли условия для горения гелия, сжимается. Темп-ра в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, темп-ра ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением темп-ры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.

Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Темп-ра начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4 He определяет Э.з. с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.

Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, к-рые характеризуют соотношение плотности и темп-ры T c в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, к-рая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение темп-ры и плотности. К моменту загорания 4 He масса ядра в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4 He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом темп-ры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У , где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.

В гелиевых ядрах звезд с align="absmiddle" width="90" height="17"> газ не вырожден, 4 He загорается спокойно, но ядра также расширяются из-за возрастания T c . У наиболее массивных звезд загорание 4 He происходит еще тогда, когда они явл. голубыми сверхгигантами. Расширение ядра ведет к уменьшению T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4 He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4 He, к-рый доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к темп-ре () теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса (s -процесса, см. ) синтезируются элементы с атомными массами от 22 Ne до 209 B.

Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до в год . Непрерывная потеря массы может дополнятся потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или неск. оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим нек-рого предела, оболочка для поддержания темп-ры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро с одной или неск. оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что темп-ра в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 10 9 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6 . У звезд с электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре . Загорание 12 C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе.

Звезды, как известно, получают свою энергию из реакций термоядерного синтеза, и у каждой звезды рано или поздно наступает момент, когда термоядерное топливо подходит к концу. Чем выше масса звезды, тем быстрее она сжигает все, что может, и переходит на заключительную стадию своего существования. Дальнейшие события могут идти по разным сценариям, какой именно – в первую очередь зависит опять же от массы.
В то время, когда «догорает» водород в центре звезды, в ней выделяется гелиевое ядро, сжимающееся и выделающее энергию. В дальнейшем в нем могут начаться реакции горения гелия и последующих элементов (см. ниже). Внешние слои увеличиваются во много раз под действием увеличившегося давления, идущего из нагретого ядра, звезда становится красным гигантом.
В зависимости от массы звезды, в ней могут протекать разные реакции. От этого зависит, какой состав будет иметь звезда к моменту угасания синтеза.

Белые карлики

Для звезд с массой до примерно 10 M C ядро весит менее 1,5 M C . После завершения термоядерных реакций прекращается давление излучения, и ядро начинает сжиматься под действием гравитации. Сжимается оно до тех пор, пока не начнет мешать давление вырожденного электронного газа, обусловленное принципом Паули. Внешние слои сбрасываются и рассеиваются, образуя планетарную туманность. Первую такую туманность открыл французский астроном Шарль Мессье в 1764 году и занес ее в каталог под номером M27.
То, что получилось из ядра, называется белым карликом. Белые карлики имеют плотностьбольше 10 7 г/см 3 и температуру поверхости порядка 10 4 К. Светимость на 2-4 порядка ниже светимости Солнца. Термоядерный синтез в нем не идет, вся излучаемая им энергия была накоплена ранее.Таким образом, белые карлики медленно остывают и перестают быть видимыми.
У белого карлика еще есть шанс проявить активность, если он входит в состав двойной звезды и перетягивает на себя массу компаньона (например, компаньон стал красным гигантом и заполнил своейй массой всю свою полость Роша). В таком случае может начаться либо синтез водорода в CNO-цикле с помощью углерода, содержащегося в белом карлике, заканчивающийся сбросом внешнего водородного слоя («новая» звезда). Либо масса белого карлика может вырасти настолько, что загорится ее углеродно-кислородная составляющая, волной взрывного горения, идущей из центра. В результате образуются тяжелые элементы с выделением большого количества энергии:

12 С + 16 O → 28 Si + 16.76 МэВ
28 Si + 28 Si → 56 Ni + 10.92 МэВ

Светимость звезды сильно возрастает в течение 2 недель, затем в течение еще 2 недель быстро спадает, после чего продолжает падать примерно в 2 раза за 50 дней. Основная энергия (около 90%) испускается в виде гамма-квантов из цепочки распада изотопа никеля.Такое явление называется сверхновой 1 типа.
Белых карликов массой в 1.5 и выше масс Солнца не бывает. Это объясняется тем, что для существования белого карлика необходимо уравновесить гравитационное сжатие давлением электронного газа, но происходит это при массах не более 1.4 M C , это ограничение называется пределом Чандрасекара. Величину можно получить как условие равенства сил давления силам гравитационного сжатия в предположении, что импульсы электронов определяются соотношением неопределенности для занимаемого ими объема, а движутся они со скоростью, близкой к скорости света.

Нейтронные звезды

В случае с более массивными (> 10 M C) звездами все происходит несколько иначе.Высокая температура в ядре активизирует реакции с поглощением энергии, такие как выбивание протонов, нейтронов и альфа-частиц из ядер, а также e-захват высокоэнергетичных электронов, компенсирующих разницу масс двух ядер. Вторая реакция создает избыток нейтронов в ядре. Обе реакции ведут к его охлаждению и общему сжатию звезды. Когда энергия ядерного синтеза заканчивается, сжатие превращается в почти свободное падение оболочки на сжимающееся ядро. При этом резко ускоряется скорость термоядерного синтеза во внешних падающих слоях, что приводит к испусканию огромного количества энергии за несколько минут (сопоставимую с энергией, которую легкие звезды испускают за все свое существование).
Сжимающееся ядро за счет высокой массы преодолевает давление электронного газа и сжимается дальше. При этом происходят реакии p + e - → n + ν e , после которых электронов, мешающих сжатию, в ядре почти не остается. Сжатие происходит до размеров в 10 − 30 км, соответствующих плотности, установленной давлением нейтронного вырожденного газа. Падающее на ядро вещество получает отраженную от нейтронного ядра ударную волну и часть выделившейся при его сжатии энергии, что приводит к стремительному выбросу внешней оболочки в стороны. Получившийся объект называется нейтронной звездой. Большую часть (90%) энергии, выделившейся от гравитационного сжатия, уносят нейтрино в первые секунды после коллапса. Вышеописанный процесс называется взрывом сверхновой второго типа. Энергия взрыва такова, что некоторые их них (редко) видны невооруженным глазом даже в дневное время. Первая сверхновая была зарегистрирована китаййскими астрономами в 185 году н.э. В настоящее время регистрируется несколько сотен вспышек в год.
Получившаяся нейтронная звезда имеет плотность ρ ~ 10 14 − 10 15 г/см 3 . Сохранение момента импулься при сжатии звезды приводит к очень малым периодам обращения, обычно в пределах от 1 до 1000 мс. Для обычных звезд такие периоды невозможны, т.к. Их гравитация не сможет противодействовать центробежным силам такого вращения. Нейтронная звезда имеет очень большое магнитное поле, достигающее 10 12 -10 13 Гс на поверхности, что приводит к сильному электромагнитному излучению. Несовпадающая с осью вращения магнитная ось приводит к тому, что в заданное направление нейтронная звезда посылает периодические (с периодом вращения) импульсы излучения. Такая звезда называется пульсаром. Этот факт помог их экспериментальному открытию и используется для обнаружения. Обнаружить нейтронную звезду оптическими методами намного сложнее из-за малой светимости. Период обращения постепенно уменьшается из-за перехода энергии в излучение.
Внешний слой нейтронной звезды состоит из кристаллического вещества, в основном железа и соседних с ним элементов. Большая часть остальной массы - нейтроны, в самом центре могут находиться пионы и гипероны. Плотность звезды растет к центру и может достигать величин, заметно больших плотности ядерной материи. Поведение материи при таких плотностях плохо изучено. Существуют теории о свободных кварках, в том числе не только первого поколения, при таких экстремальных плотностях адронной материи. Возможны сверхпроводимое и сверхтекучее состояние нейтронного вещества.
Существует 2 механизма охлаждения нейтронной звезды. Один из них – излучение фотонов, как и всюду. Второй механизм – нейтринный. Он преобладает до тех пор, пока температура ядра выше 10 8 K. Обычно это соответствует температуре поверхности выше 10 6 K и длится 10 5 −10 6 лет. Существует несколько способов излучения нейтрино:

Черные дыры

В случае, если масса исходной звезды превышала 30 масс Солнца, то образующееся во взрыве сверхновой ядро будет тяжелее 3 M C . При такой массе давление нейтронного газа больше не может сдерживать гравитацию, и ядро не останавливается на стадии нейтронной звезды, а продолжает коллапсировать (тем не менее, экспериментально обнаруженные нейтронные звезды имеют массы не более 2 масс Солнца, а не трех). На этот раз коллапсу уже ничего не помешает, и образуется черная дыра. Этот объект имеет чисто релятивистскую природу и не может быть объяснен без ОТО. Несмотря на то, что вещество, по теории, сколлапсировало в точку − сингулярность, черная дыра имеет ненулевой радиус, называемый радиусом Шварцшильда:

R Ш = 2GM/c 2 .

Радиус обозначает границу непреодолимого даже для фотонов гравитационного поля черной дыры, называемую горизонтом событий. К примеру, радиус Шварцшильда Солнца − всего 3 км. Вне горизонта событий гравитационное поле черной дыры такое же, как поле обычного объекта ее массы. Наблюдать черную дыру можно только по косвенным эффектам, так как сама она сколько-нибудь заметной энергии не излучает.
Несмотря на то, что покинуть горизонт событий ничто не может, черная дыра все же может создавать излучение. В квантовом физическом вакууме постоянно рождаются и исчезают виртуальные пары частица-античастица. Сильнейшее гравитационное поле черной дыры может успеть провзаимодействовать с ними до того, как они исчезнут, и поглотить античастицу. В случае, если полная энергия виртуальной античастицы была отрицательна, черная дыра при этом теряет массу, а оставшаяся частица становится реальной и получает энергию, достаточную, чтобы улететь из поля черной дыры. Это излучение называется излучением Хокинга и имеет спектр абсолютно черного тела. Ему можно приписать некоторую температуру:

Влияние этого процесса на массу большинства черных дыр ничтожно по сравнению с той энергией, которую они получают даже от реликтового излучения. Исключение составляют реликтовые микроскопические черные дыры, которые могли образоваться на ранних стадиях эволюции Вселенной. Малые размеры ускоряют процесс испарения и замедляют процесс набора массы. Последние стадии испарения таких черных дыр должны заканчиваться взрывом. Подходящих под описание взрывов зарегистрировано ни разу не было.
Вещество, падающее на черную дыру, нагревается и становится источником рентгеновского излучения, которое служит косвенным признаком наличия черной дыры. При падении на черную дыру вещества с большим моментом импульса оно образует вращающийся аккреционный диск вокруг нее, в котором частицы теряют энергию и момент импульса перед падением на черныю дыру. В случае с сверхмассивной черной дырой, возникают два выделенных направления вдоль оси диска, в которых давление испускаемого излучения и электромагнитные эффекты ускоряют выбившиеся из диска частицы. Это создает мощные струи вещества в обе стороны, которые также можно зарегистрировать. По одной из теорий, именно так устроены активные ядра галактик и квазары.
Вращающаяся черная дыра представляет собой более сложный объект. Своим вращением она «захватывает» некоторую область пространства за горизонтом событий («Эффект Лензе-Тирринга»). Эта область называется эргосферой, ее граница называется пределом статичности. Предел статичности представляет собой эллипсоид, совпадающий с горизонтом событий в двух полюсах вращения черной дыры.
Вращающиеся черные дыры имеют дополнительный механизм потери энергии через передачу ее частицам, попавшим в эргосферу. Такая потеря энергии сопровождается потерей момента импульса и замедляет вращение.

Список литературы

  1. С.Б.Попов, М.Е.Прохоров "Астрофизика одиночных нейтронных звезд: радиотихие нейтронные звезды и магнитары" ГАИШ МГУ, 2002
  2. Уильям Дж. Кауфман "Космические рубежи теории относительности" 1977
  3. Другие источники в интернет

декабрь 2010 г.

Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    ✪ С. А. Ламзин - "Звездная эволюция"

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,

Эволюция Звёзд Разной Массы

Астрономы не могут наблюдать жизнь одной звезды от начала до конца, потому что даже самые короткоживущие звезды существуют миллионы лет - дольше жизни всего человечества. Изменение со временем физических характеристик и химического состава звезд, т.е. звездную эволюцию, астрономы изучают на основе сопоставления характеристик множества звезд, находящихся на разных стадиях эволюции.

Физические закономерности, связывающие наблюдаемые характеристики звезд, отражаются на диаграмме цвет-светимость - диаграмме Герцшпрунга - Ресселла, на которой звезды образуют отдельные группировки - последовательности: главную последовательность звезд, последовательности сверхгигантов, ярких и слабых гигантов, субгигантов, субкарликов и белых карликов.

Большую часть своей жизни любая звезда находится на так называемой главной последовательности диаграммы цвет-светимость. Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше. Главная последовательность включает в себя около 90% всех наблюдаемых звезд.

Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой. Звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд - всего миллионы лет. Для подавляющего большинства звезд время жизни - около 15 млрд. лет. После того как звезда исчерпает свои источники энергии она начинает остывать и сжиматься. Конечным продуктом эволюции звезд являются компактные массивные объекты, плотность которых во много раз больше, чем у обычных звезд.

Звезды разной массы приходят в итоге к одному из трех состояний: белые карлики, нейтронные звезды или черные дыры. Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды (гравитационный коллапс) прекращается. Она переходит в устойчивое состояние белого карлика. Если масса превышает критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов и имеет такую громадную плотность, что огромная звездная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается - образуется нейтронная звезда. Если же масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса, то конечным этапом эволюции звезды будет черная дыра.