Коэффициент паропроницаемости строительных материалов. Паропроницаемость строительных материалов

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ. Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1. Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериалов

По этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.

При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.

При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании. Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов .

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости : µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

  • за счет теплопроводности материалов ограждающих конструкций (стен, окон, дверей, перекрытий);
  • через конвекцию — перенос тепла потоками воздуха, проходящими через дом (при движение холодного воздуха снаружи в дом и нагретого обратно, из дома на улицу).

За счет этих двух процессов теряется практически вся энергия, поступающая в дом.

Частные застройщики, как правило, уделяют основное внимание утеплению дома путем снижения теплопроводности ограждающих конструкций. Каждый хорошо знает, что увеличивая толщину и эффективность теплоизоляции стен и перекрытий, можно уменьшить потери тепла.

Утепление дома этим методом широко освещается в статьях и обсуждается на форумах Интернета. Серию статей, посвященных утеплению стен и перекрытий частного дома Вы найдете и в этом блоге, например

Заметно меньше внимания частные застройщики обращают на снижение теплопотерь через конвекцию. Многие не знают, что при перемещении воздуха, из дома может уносится до 40% всей энергии.

Воздух может проникать и покидать дом различными путями.

Различают организованное, контролируемое движение воздуха в доме — это система вентиляции, и неконтролируемые пути — это инфильтрация (поступление) и эксфильтрация (удаление) воздуха через материалы и конструкции.

Вентиляция в теплом доме

Хочу лишь еще раз обратить внимание на то, что застройщики в подавляющем большинстве до сих пор используют простейшую Систему, в которой не предусмотрен организованный приток воздуха, отсутствуют специальные устройства для подачи воздуха в дом, а самое главное — нет возможности контроля и регулирования количества подаваемого и удаляемого из помещений воздуха.

В результате, нередко в доме повышенная влажность воздуха, выпадает конденсат на окнах и в других местах, появляется грибок и плесень. Обычно, это говорит о том, что вентиляция не справляется со своей задачей — удалять, выделяемые в воздух помещения, загрязнения и избыточную влагу. Количество уходящего через вентиляцию воздуха явно недостаточно.

В других домах зимой чаще наоборот, воздух очень сухой с относительной влажностью менее 30% (комфортная влажность 40-60%). Это свидетельствует о том, что через вентиляцию уходит слишком много воздуха. Поступающий в дом морозный сухой воздух не успевает насытиться влагой и сразу уходит в вентканал. А с воздухом уходит и тепло . Получаем дискомфорт микроклимата помещений и потери тепла.

Интересно то, что традиционные для России дома со стенами из бревна или бруса не имеют специальных устройств для вентиляции.

Вентиляция помещений в таких домах происходит за счет неконтролируемой воздухопроницаемости стен, перекрытий и окон, а также в результате перемещения воздуха через дымоход при топке печи.

Многие считают высокую воздухопроницаемость деревянных стен достоинством — стены «дышат». По их мнению в деревянном доме легче дышать, комфортнее микроклимат. Действительно, большая воздухопроницаемость деревянного дома увеличивает воздухообмен в доме, снижает влажность. Но такая вентиляция деревянного дома совершенно неуправляемая. Расплачиваться за этот «комфорт» приходится высокими теплопотерями через конвекцию.

В конструкциях современного деревянного дома все чаще применяют различные способы герметизации — машинное профилирование сопрягаемых поверхностей бревен и брусьев, герметики для межвенцовых швов, паронепроницаемые и ветрозащитные пленки в перекрытиях, герметичные окна. Все чаще стены деревянного дома закрывают утеплителем. В комнатах, как правило, нет печей. Система вентиляции в таких домах просто необходима.

Теплый дом должен иметь более совершенную

Воздухопроницаемость, продуваемость теплого дома

Не организованное и не контролируемое движение воздуха через материалы и конструкции дома, а проще говоря продуваемость оболочки дома, в строительстве характеризуется термином и показателем «воздухопроницаемостью».

Воздухопроницаемость — это количество воздуха, которое проходит через образец материала определенного размера в единицу времени при разности давлений на его противоположных сторонах. Обратная величина, говорящая о способности материала препятствовать движению воздуха, называется сопротивлением воздухопроницанию.

Воздухопроницаемость строительных конструкций определяется воздухопроницаемостью составляющих эту конструкцию материалов и сопряжений между ними. Например, воздухопроницаемость кирпичной стены складывается из воздухопроницаемостей кирпича, раствора и примыкания раствора к кирпичу.

Воздухопроницаемость всего здания, как единого целого, зависит от воздухопроницаемости ограждающих конструкций внешней оболочки дома.

Как воздухопроницаемость влияет на тепловые потери дома? А примерно также, как в одежде. Если пальто продувает, задувает в рукава, поддувает снизу и сверху, то тепло не будет, какой бы толстой не была подкладка. Так, увеличение толщины и эффективности утеплителей в стенах и перекрытиях окажется бесполезным , если не обеспечена минимальная воздухопроницаемость дома.

Кроме того, в зимнее время при истечении изнутри наружу через неплотности ограждения дома теплого воздуха с водяными парами, происходит конденсация и накопление влаги в строительных конструкциях. Влагонакопление ведет к увеличению теплопроводности и снижению долговечности строительных конструкций дома.

Минимальная воздухопроницаемость оболочки здания — необходимое условие для того, чтобы сделать дом теплым. Чем меньше воздухопроницаемость дома — тем лучше. Но обеспечение высокой герметичности конструкций стоит недешево. Поэтому, строительные нормы ограничивают верхний предел воздухопроницаемости зданий на компромиссном уровне — чтобы было не очень дорого и обеспечивался установленный нормами уровень теплопотерь здания.

При проектировании дома воздухопроницаемость отдельных элементов и дома в целом определяют расчетами, добиваясь того, чтобы сопротивление воздухопроницанию укладывалось в установленные нормы.

Измерение воздухопроницаемости частного дома

Аэродверь

По окончании строительства воздухопроницаемость дома можно измерить с помощью устройства Аэродверь , см. рис.

Аэродверь ставится на место входной двери дома. Все вентиляционные отверстия и дымоходы в доме герметично заклеиваются, окна и форточки закрываются.

Вентилятор аэродвери нагнетает воздух в дом до определенного давления и постоянно поддерживает его. При разности давлений наружного и внутреннего воздуха 50 Па . определяют кратность воздухообмена в отапливаемой части дома.

Кратность воздухообмена — это величина, значение которой показывает, сколько раз в течение 1 часа воздух в помещении полностью заменяется на новый.

В теплом доме кратность воздухообмена при проверке на герметичность должна быть меньше 0,6 ед/час .

Воздухопроницаемость (продуваемость) — одна из основных характеристик качества теплого дома.

Как найти дефекты герметизации наружных стен и других ограждений дома

Если при измерении воздухопроницаемости дома обнаружилось, что кратность воздухообмена выше нормы, то ищут места негерметичности в ограждении дома. Чаще всего это места стыка конструкций из разных материалов, дверные или оконные проемы, места прохода коммуникаций.

Для поиска мест негерметичности в ограждениях дома включают вентилятор аэродвери на откачку воздуха из дома — в доме создают вакуум в 50 кПа. , что соответствует давлению ветра 5 м/сек. С помощью ручного электронного анемометра измеряют скорость движения воздуха вблизи опасных мест подсоса наружного воздуха. Герметизации подлежат все места подсоса, где скорость движения воздуха превышает 2 м/с.

Для поиска мест утечек тепла удобно использовать инфракрасные термографические камеры — тепловизоры. На снимке фасада или других элементов снаружи и внутри дома, сделанном с помощью тепловизора, легко определить места утечек тепла через негерметичные конструкции и через мостики холода.

Как уменьшить воздухопроницаемость ограждающих конструкций дома

Разность давлений, которая служит причиной движения воздуха через конструкции дома, создается во первых, давлением ветра, и, во вторых, обусловлена разностью температур наружного воздуха и воздуха внутри помещений. Холодный — тяжелый уличный воздух вытесняет, выталкивает теплый — легкий воздух из помещений.

Чтобы сделать дом теплым необходимо вокруг отапливаемой части дома создать две оболочки.

Одну оболочку — с высоким сопротивлением теплопередаче, используя в ограждающих конструкциях материалы с низкой теплопроводностью.

Другую — с большим сопротивлением воздухопроницанию. Можно конечно совместить эти свойства и в одной оболочке, если получится.

Для снижения воздухопроницаемости конструкций дома необходимо:

Помните, маленькие струйки тепла через дефекты герметизации легко и незаметно превращаются в реки теплопотерь, которые долгие годы придется Вам оплачивать.

Следующая статья:

Предыдущая статья:

Выберите тип вентиляции для своего дома

Таблица паропроницаемости - это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость - это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение - это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение - это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость - это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой - разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция - это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции - это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов - это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Таблица паропроницаемости материалов.

Материал

Коэффициент паропроницаемости, мг/(м*ч*Па)

Алюминий

Арболит, 300 кг/м3

Арболит, 600 кг/м3

Арболит, 800 кг/м3

Асфальтобетон

Вспененный синтетический каучук

Гипсокартон

Гранит, гнейс, базальт

ДСП и ДВП, 1000-800 кг/м3

ДСП и ДВП, 200 кг/м3

ДСП и ДВП, 400 кг/м3

ДСП и ДВП, 600 кг/м3

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Известняк, 1400 кг/м3

Известняк, 1600 кг/м3

Известняк, 1800 кг/м3

Известняк, 2000 кг/м3

Керамзит (насыпной, т.е. гравий), 200 кг/м3

0,26; 0,27 (СП)

Керамзит (насыпной, т.е. гравий), 250 кг/м3

Керамзит (насыпной, т.е. гравий), 300 кг/м3

Керамзит (насыпной, т.е. гравий), 350 кг/м3

Керамзит (насыпной, т.е. гравий), 400 кг/м3

Керамзит (насыпной, т.е. гравий), 450 кг/м3

Керамзит (насыпной, т.е. гравий), 500 кг/м3

Керамзит (насыпной, т.е. гравий), 600 кг/м3

Керамзит (насыпной, т.е. гравий), 800 кг/м3

Керамзитобетон, плотность 1000 кг/м3

Керамзитобетон, плотность 1800 кг/м3

Керамзитобетон, плотность 500 кг/м3

Керамзитобетон, плотность 800 кг/м3

Керамогранит

Кирпич глиняный, кладка

Кирпич керамический пустотелый (1000 кг/м3 брутто)

Кирпич керамический пустотелый (1400 кг/м3 брутто)

Кирпич, силикатный, кладка

Крупноформатный керамический блок (тёплая керамика)

Линолеум (ПВХ, т.е. ненатуральный)

Минвата, каменная, 140-175 кг/м3

Минвата, каменная, 180 кг/м3

Минвата, каменная, 25-50 кг/м3

Минвата, каменная, 40-60 кг/м3

Минвата, стеклянная, 17-15 кг/м3

Минвата, стеклянная, 20 кг/м3

Минвата, стеклянная, 35-30 кг/м3

Минвата, стеклянная, 60-45 кг/м3

Минвата, стеклянная, 85-75 кг/м3

ОСП (OSB-3, OSB-4)

Пенобетон и газобетон, плотность 1000 кг/м3

Пенобетон и газобетон, плотность 400 кг/м3

Пенобетон и газобетон, плотность 600 кг/м3

Пенобетон и газобетон, плотность 800 кг/м3

Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3

Пенополистирол экструдированный (ЭППС, XPS)

0,005 (СП); 0,013; 0,004

Пенополистирол, плита

Пенополиуретан, плотность 32 кг/м3

Пенополиуретан, плотность 40 кг/м3

Пенополиуретан, плотность 60 кг/м3

Пенополиуретан, плотность 80 кг/м3

Пеностекло блочное

0 (редко 0,02)

Пеностекло насыпное, плотность 200 кг/м3

Пеностекло насыпное, плотность 400 кг/м3

Плитка (кафель) керамическая глазурованная

Плитка клинкерная

низкая; 0,018

Плиты из гипса (гипсоплиты), 1100 кг/м3

Плиты из гипса (гипсоплиты), 1350 кг/м3

Плиты фибролитовые и арболит, 400 кг/м3

Плиты фибролитовые и арболит, 500-450 кг/м3

Полимочевина

Полиуретановая мастика

Полиэтилен

Раствор известково-песчаный с известью (или штукатурка)

Раствор цементно-песчано-известковый (или штукатурка)

Раствор цементно-песчаный (или штукатурка)

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Эковата целлюлозная