Строение и функции коры головного мозга. Физиология коры больших полушарий

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Кора больших полушарий головного мозга представляет собой наиболее молодое образование ЦНС. В филогенезе объем новой коры (плаща) увеличивается. Так, новая кора по отношению ко всей коре у ежа составляет 32,4%, у кролика - 56, у собаки - 84,2, а у человека - 95,9%.

Кора больших полушарий состоит из трех зон: древней, старой и новой. В древнюю кору входят обонятельная доля, боковая обонятельная извилина. Старая кора состоит из гиппокамповой и зубчатой извилин. Новая кора представляет собой зону проекции внешней рецепции на поле воспринимаемых нейронов коры. У человека поверхность новой коры составляет 1500 см 3 . Быстрое развитие проекционных полей, ассоциативных областей коры, и медленное развитие костей черепа привело к образованию складок: борозд и извилин.

Кора состоит из 14 млрд клеток, расположенных в шести слоях (рис. 3.11).

  • 1. Молекулярный слой коры головного мозга - образован волокнами, сплетенными между собой, содержит мало клеток.
  • 2. Наружный зернистый слой коры головного мозга - характеризуется густым расположением мелких нейронов самой различной формы.
  • 3. Наружный пирамидный слой коры головного мозга - состоит в основном из пирамидных нейронов разной величины, более крупные клетки лежат более глубоко.
  • 4. Внутренний зернистый слой коры головного мозга - характеризуется рыхлым расположением мелких нейронов различной величины, мимо которых проходят плотные пучки волокон перпендикулярно к поверхности коры.
  • 5. Внутренний пирамидный слой коры головного мозга - состоит в основном из средних и больших пирамидных нейронов, апикальные дендриты которых простираются до молекулярного слоя.
  • 6. Слой веретеновидных клеток коры головного мозга - в нем расположены веретеновидные нейроны, глубинная часть этого слоя переходит в белое вещество головного мозга. Слои 2, 4 и 6 состоят из воспринимающих клеток. Слои 3 и 5 - пирамидные, дающие начало нисходящим двигательным путям. Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои.

Как показал киевский анатом В.А. Бец, не только вид нервных клеток, но и их взаиморасположение неодинаково в различных участках коры. Распределение нервных клеток в коре обозначается термином «цитоархитектоника». Исследования, проведенные учеными разных стран в конце XIX и начале XX столетия, позволили

Рис. 3.11.

С.Г. Кривощеков, 2012)

создать цитоархитектонические карты коры большого мозга человека и животных, в основу которых были положены особенности строения коры в каждом участке полушария. К. Бродман выделил в коре 52 цитоархитектонических поля, Ф. Фогт и О. Фогт с учетом волоконного строения описали в коре большого мозга 150 миелоар- хитектонических участков.

Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида этих путей:

  • 1) проекционный путь. Он связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • 2) комиссуральный путь. Его волокна входят в состав мозговых комиссур, которые соединяют соответствующие части правого и левого полушарий. Входят в состав мозолистого тела;
  • 3) ассоциативные пути связывают участки коры одного и того же полушария.

В коре больших полушарий располагаются высшие регуляторные центры, обеспечивающие контроль и регуляцию всех рефлекторных процессов организма, психическую деятельность, поведение, восприятие всех видов чувствительности.

Электрическая активность коры больших полушарий. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрацию электроэнцефалограммы (ЭЭГ), т.е. электрической активности коры, можно производить через неповрежденные покровы головы (в естественных условиях на животных и человеке) и регистрировать суммарную активность всех ближайших к поверхности нейронов. Современные элекгроэнцефалографы усиливают эти потенциалы в 2-3 млн раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ, и амплитуды волн (рис. 3.12). В состоянии относительного покоя чаще всего регистрируется альфа-ритм, в состоянии активного внимания - бета-ритм, при засыпании, некоторых эмоциональных состояниях - тэта-ритм, при глубоком сне, потере сознания, наркозе - дельта-ритм.

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ - быстрой асинхронной активности.

В процессе обучения и овладения разными двигательными навыками происходит перестройка и совершенствование функций коры больших полушарий: увеличиваются амплитуда и регулярность проявления фоновой активности - альфа-ритма в состоянии покоя, значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электриче-

Рис. 3.12. Биопотенциалы коры больших полушарий на ЭЭГ (Дж. Хэссет, 1981) ской активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние - программирующие лобные области и задние - зоны афферентного синтеза (нижнетеменные и др.).

Головной мозг располагается в мозговом отделе черепа. Его средний вес 1360 г. Выделяют три больших отдела мозга: ствол, подкорковый отдел и кару больших полушарий. Из основания мозга выходят 12 пар черепных нервов.

1 - верхний участок спинного мозга; 2 - продолговач ый мозг, 3 - мост, 4 - мозжечок; 5 - средний мозг; 6 - четверохолмие; 7 - промежуточный мозг; 8 - кора больших полушарий; 9 - мозолистое тело, соединяющее правое полушарие с новым; 10 - перекрест зрительных нервов; 11 - обонятельные луковицы.

Отделы головного мозга и их функции

Отделы мозга

Структуры отделов

Функции

СТВОЛ МОЗГА

Задний мозг

Продолговатый мозг

Здесь находятся ядра с отходящими парами черепно-мозговы> нервов:

XII - подъязычных; XI - добавочных; X - блуждающих; IX - языкоглоточных нервов

Проводниковая - связь спинного и вышележащих отделов головного мозга.

Рефлекторные:

1) регуляция деятельности дыхательной, сердечно-сосудистой и пищеварительной систем;

2) пищевые рефлексы слюноотделения, жевания, глотания;

3) защитные рефлексы: чихание, моргание, кашель, рвота;

Варолиев мост

содержит ядра: VIII - слухового; VII - лицевого; VI - отводящего; V - тройничного нервов.

Проводниковая - содержит восходящие и нисходящие нервные пути и нервные волокна, соединяющие полушария мозжечка между собой и с корой большого мозга. Рефлекторная - отвечает за вестибулярные и шейные рефлексы, регулирующие тонус мышц, в т.ч. мимических мышц.

Мозжечок

Полушария мозжечка соединены между собой и образованы серым и белым веществом.

Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия.

Ретикулярная формация - сеть нервных волокон, оплетающих ствол мозга и промежуточный мозг. Обеспечивает взаимодействие восходящих и нисходящих путей мозга, координацию различных функций организма и регуляцию возбудимости всех отделов ЦНС.

Средний мозг

Четверохолмие

С ядрами первичных зрительных и слуховых центров.

Ножки мозга

С ядрами IV - глазодвигательного III - блокового нервов.

Проводниковая.

Рефлекторны:

1) ориентировочные рефлексы на зрительные и звуковые раздражители,которые проявляются в повороте головы и туловища;

2) регуляция мышечного тонуса и позы тела.

ПОДКОРКА

Передний мозг

Промежуточный мозг:

а) таламус (зрительный бугор) с ядрами ll -й пары зрительных нервов;

Сбор и оценка всей поступающей информации от органов чувств. Выделение и передача в кору мозга наиболее важной информации. Регуляция эмоционального поведения.

б) гипоталамус.

Высший подкорковый центр вегетативной нервной системы и всех жизненно важных функций организма. Обеспечение постоянства внутренней среды и обменных процессов организма. Регуляция мотивированного поведения и обеспечение защитных реакций (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие). Участие в смене сна и бодрствования.

Базальные ганглии (подкорковые ядра)

Роль в регуляции и координации двигательной активности (вместе с таламусом и мозжечком). Участие в создании и запоминании программ целенаправленных движений,обучения и памяти.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Древняя и старая кора (обонятельный и висцеральный мозг) Содержит ядра 1-ой пары обонятельных нервов.

Древняя и старая кора вместе с некоторыми подкорковыми структурами формирует лимбическую систему, которая:

1) отвечает за врожденные поведенческие акты и формирование эмоций;

2) обеспечивает гомеостаз и контроль реакций, направленных на самосохранение и сохранение вида:

3 влияет на регуляцию вегетативных функций.

Новая кора

1) Осуществляет высшую нервную деятельность, отвечает за сложное сознательное поведение и мышление. Развитие морали, воли, интеллекта, связаны с деятельностью коры.

2) Осуществляет восприятие, оценку и обработку всей поступающей информации от органов чувств.

3) Координирует деятельность всех систем организма.

4) Обеспечивает взаимодействие организма с внешней средой.


Кора больших полушарий головного мозга

Кора больших полушарий - филогенетически наиболее молодое образование мозга. За счет борозд общая площадь поверхности коры взрослого человека 1700 2000 см2. В коре насчитывают от 12 до 18 млрд, нервных клеток, которые расположены в несколько слоев. Кора представляет собой слой серого вещества толщиной 1,5-4 мм.

На рисунке ниже показаны функциональные зоны и доли коры головного мозга

Расположение серого и белого вещества

Доли полушарий

Зоны полушарий

Кора – серое вещество, белое вещество нахо-дится под ко-рой, в белом веществе есть скопления серо-го вещества в виде ядер

Центры речи

Теменная

Кожно-мышечная зона

Контроль дви-жений, спо-собность раз-личать раздражения

Височная

Слуховая зона

Дуги рефлексов, различающих звуковые раздражения

Вкусовая и обонятельная зоны

Рефлексы различения вкусов и запахов

Затылочная

Зрительная зона

Различение зрительных раздражений

Чувствительная и двигательная зоны коры больших полушарий

Левое полушарие мозга

Правое полушарие мозга

Левое полушарие ("мыслительное”, логическое) - - отвечает за регуляцию речевой деятельности, устной речи, письма, счета и логического мышления. Доминантное у правшей.

Правое полушарие ("художественное", эмоциональное) - - участвует в распознавании зрительных, музыкальных образов, формы и структуры предметов, в сознательной ориентации в пространстве.

Поперечный срез левого полушария через чувствительные центры

Представительство тела в чувствительной зоне коры больших полушарий. Чувствительная зона каждого полушария получает информацию от мышц, кожи и внутренних органов противоположной стороны тела.

Поперечный срез правого полушария через двигательные центры

Представительство тела в двигательной зоне коры больших полушарий. Каждый участок двигательной зоны контролирует движения конкретной мышцы.

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

1. Какое строение имеет кора больших полушарий?

Кора больших полушарий представляет собой слой се-рого вещества толщиной в 2-4 мм. Она образована нерв-ными клетками (около 14 млрд), расположенными на поверхности переднего мозга. Борозды (углубления), изви-лины (складки) увеличивают площадь поверхности коры (до 2000—2500 см 2).

2. Какие доли выделяют в коре больших полушарий?

Кора больших полушарий разделена на доли глубокими (бороздами. В каждом полушарии выделяют лобную долю, теменную, височную и затылочную. Лобная доля от темен-ной отделена центральной бороздой. Височную долю от лобной и теменной отделяет боковая борозда. Затылочная доля отделена от теменной менее глубокой теменно-затылочной бороздой.

3. Какие функции выполняет кора больших полушарий?

Кора больших полушарий отвечает за восприятие всей поступающей в мозг информации (зрительной, слуховой, осязательной, вкусовой и т.д.), за управление всеми слож-ными мышечными движениями. С работой больших по-лушарий связаны психические функции (память, речь, мышление и др.).

4. Каково расположение областей, ответственных за осу-ществление функций коры?

В коре больших полушарий различают сенсорные, мо-торные и ассоциативные зоны.

В сенсорных зонах находятся центральные отделы ана-лизаторов, т.е. происходит обработка информации, посту-пающей от органов чувств. Соматосенсорная зона (кожной чувствительности) располагается в заднецентральной изви-лине, сзади от центральной борозды. К этой зоне приходят импульсы от скелетных мышц, сухожилий и суставов, а так-же импульсы от тактильных, температурных и других рецеп-торов кожи. В правое полушарие поступают импульсы от левой половины тела, а в левое — от правой. Зрительная зо-на располагается в затылочной области коры. В эту зону приходят импульсы от сетчатки. Слуховая зона располагает-ся в височной области. Раздражение этой области вызывает ощущение низких или высоких, громких или тихих звуков. Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. При ее раздражении возникают различные вкусовые ощущения. Материал с сайта

Моторными зонами называют отделы коры больших полушарий, при раздражении которых возникает движение. Двигательная зона расположена в передней центральной из вилине (спереди от центральной борозды). С верхней ча-стью полушарий связана регуляция движений нижних ко-нечностей, затем туловища, еще ниже руки, а затем мышц лица и головы. Наибольшее пространство занимает двига-тельная зона кисти и пальцев руки и мышц лица, наимень-шее — мышц туловища. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэто-му при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела.

Ассоциативные зоны (в частности, теменная доля) свя-зывают различные области коры. Деятельность этих зон лежит в основе высших психических функций человека. При этом правое полушарие отвечает за образное (узнава-ние людей, восприятие музыки, художественное творчест-во) мышление, левое за абстрактное (письменная и устная речь, математические операции) мышление.

Деятельность каждого органа человека находится под контролем коры больших полушарий.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • строение коры больших полушарий кратко
  • кора мозга сообщение
  • зоны коры больших полушарий мозга сенсорные ощущений
  • мышечная зона копы больших полушарий находится в
  • строение и функции коры больших полушарий у школьников